Empty ] [ colored ] k-gons-Recent results on some Erdős-Szekeres type problems

We consider a family of problems which are based on a question posed by Erdős and Szekeres in 1935: “What is the smallest integer g(k) such that any set of g(k) points in the plane contains at least one convex k-gon?” In the mathematical history this has become well known as the “Happy End Problem”. There are several variations of this problem: The k-gons might be required to be empty, that is, to not contain any points of the set in their interior. In addition the points can be colored, and we look for monochromatic k-gons, meaning polygons spanned by points of the same color. Beside the pure existence question we are also interested in the asymptotic behavior, for example whether there are super-linear many k-gons of some type. And finally, for several of these problems even small non-convex k-gons are of interest. We will survey recent progress and discuss open questions for this class of problems.

[1]  Adrian Dumitrescu Planar sets with few empty convex polygons , 1998, CCCG.

[2]  János Pach,et al.  Research problems in discrete geometry , 2005 .

[3]  Oswin Aichholzer,et al.  The point set order type data base: A collection of applications and results , 2001, CCCG.

[4]  P. Valtr On the minimum number of empty polygons in planar point sets , 1992 .

[5]  Michael P. Giannetto,et al.  The Man Who Loved Only Numbers , 2005 .

[6]  Peter Borwein The Erdős—Szekeres Problem , 2002 .

[7]  P. Erdös,et al.  Crossing Number Problems , 1973 .

[8]  Micha Sharir,et al.  On empty convex polygons in a planar point set , 2006, J. Comb. Theory, Ser. A.

[9]  V. Soltan,et al.  The Erdos-Szekeres problem on points in convex position – a survey , 2000 .

[10]  Franz Aurenhammer,et al.  Two-convex polygons , 2009 .

[11]  Richard Pollack,et al.  Multidimensional Sorting , 1983, SIAM J. Comput..

[12]  Fan Chung Graham,et al.  Forced Convex n -Gons in the Plane , 1998, Discret. Comput. Geom..

[13]  Heiko Harborth Konvexe Fünfecke in ebenen Punktmengen. , 1978 .

[14]  Imre Bárány,et al.  Problems and Results around the Erdös-Szekeres Convex Polygon Theorem , 2000, JCDCG.

[15]  Knut Dehnhardt Leere konvexe Vielecke in ebenen Punktmengen , 1987 .

[16]  Paul Erdös,et al.  Some Old and New Problems in Combinatorial Geometry , 1984 .

[17]  Carlos M. Nicolas The Empty Hexagon Theorem , 2007, Discret. Comput. Geom..

[18]  Tobias Gerken Empty Convex Hexagons in Planar Point Sets , 2008, Discret. Comput. Geom..

[19]  I. Bárány,et al.  Empty Simplices in Euclidean Space , 1987, Canadian Mathematical Bulletin.

[20]  Francisco Santos,et al.  Pseudo-Triangulations - a Survey , 2006 .

[21]  Erik D. Demaine,et al.  Open problem session , 2010, CCCG.

[22]  G. Fejes Tóth PLANAR POINT SETS WITH A SMALL NUMBER OF EMPTY CONVEX POLYGONS , 2004 .

[23]  Bettina Speckmann,et al.  Plane Graphs with Parity Constraints , 2009, WADS.

[24]  Géza Tóth,et al.  Note on the Erdos - Szekeres Theorem , 1998, Discret. Comput. Geom..

[25]  V. A. Koshelev On the Erdös-Szekeres problem in combinatorial geometry , 2007, Electron. Notes Discret. Math..

[26]  George Szekeres,et al.  Computer solution to the 17-point Erdős-Szekeres problem , 2006 .

[27]  The Erdős – Szekeres Theorem : Upper Bounds and Related Results , 2004 .

[28]  Lior Pachter,et al.  Finding Convex Sets Among Points in the Plane , 1998, Discret. Comput. Geom..

[29]  Esther E. Klein,et al.  On some extremum problems in elementary geometry , 2006 .

[30]  Mark H. Overmars Finding Sets of Points without Empty Convex 6-Gons , 2003, Discret. Comput. Geom..

[31]  R. P. Dilworth,et al.  A DECOMPOSITION THEOREM FOR PARTIALLY ORDERED SETS , 1950 .

[32]  Ruy Fabila Monroy,et al.  Empty monochromatic triangles , 2009, Comput. Geom..

[33]  A. Meir,et al.  On empty triangles determined by points in the plane , 1988 .

[34]  G. Szekeres,et al.  A combinatorial problem in geometry , 2009 .

[35]  Ferran Hurtado,et al.  Large Bichromatic Point Sets Admit Empty Monochromatic 4-Gons , 2010, SIAM J. Discret. Math..

[36]  J. Horton Sets with No Empty Convex 7-Gons , 1983, Canadian Mathematical Bulletin.