Empty ] [ colored ] k-gons-Recent results on some Erdős-Szekeres type problems
暂无分享,去创建一个
[1] Adrian Dumitrescu. Planar sets with few empty convex polygons , 1998, CCCG.
[2] János Pach,et al. Research problems in discrete geometry , 2005 .
[3] Oswin Aichholzer,et al. The point set order type data base: A collection of applications and results , 2001, CCCG.
[4] P. Valtr. On the minimum number of empty polygons in planar point sets , 1992 .
[5] Michael P. Giannetto,et al. The Man Who Loved Only Numbers , 2005 .
[6] Peter Borwein. The Erdős—Szekeres Problem , 2002 .
[7] P. Erdös,et al. Crossing Number Problems , 1973 .
[8] Micha Sharir,et al. On empty convex polygons in a planar point set , 2006, J. Comb. Theory, Ser. A.
[9] V. Soltan,et al. The Erdos-Szekeres problem on points in convex position – a survey , 2000 .
[10] Franz Aurenhammer,et al. Two-convex polygons , 2009 .
[11] Richard Pollack,et al. Multidimensional Sorting , 1983, SIAM J. Comput..
[12] Fan Chung Graham,et al. Forced Convex n -Gons in the Plane , 1998, Discret. Comput. Geom..
[13] Heiko Harborth. Konvexe Fünfecke in ebenen Punktmengen. , 1978 .
[14] Imre Bárány,et al. Problems and Results around the Erdös-Szekeres Convex Polygon Theorem , 2000, JCDCG.
[15] Knut Dehnhardt. Leere konvexe Vielecke in ebenen Punktmengen , 1987 .
[16] Paul Erdös,et al. Some Old and New Problems in Combinatorial Geometry , 1984 .
[17] Carlos M. Nicolas. The Empty Hexagon Theorem , 2007, Discret. Comput. Geom..
[18] Tobias Gerken. Empty Convex Hexagons in Planar Point Sets , 2008, Discret. Comput. Geom..
[19] I. Bárány,et al. Empty Simplices in Euclidean Space , 1987, Canadian Mathematical Bulletin.
[20] Francisco Santos,et al. Pseudo-Triangulations - a Survey , 2006 .
[21] Erik D. Demaine,et al. Open problem session , 2010, CCCG.
[22] G. Fejes Tóth. PLANAR POINT SETS WITH A SMALL NUMBER OF EMPTY CONVEX POLYGONS , 2004 .
[23] Bettina Speckmann,et al. Plane Graphs with Parity Constraints , 2009, WADS.
[24] Géza Tóth,et al. Note on the Erdos - Szekeres Theorem , 1998, Discret. Comput. Geom..
[25] V. A. Koshelev. On the Erdös-Szekeres problem in combinatorial geometry , 2007, Electron. Notes Discret. Math..
[26] George Szekeres,et al. Computer solution to the 17-point Erdős-Szekeres problem , 2006 .
[27] The Erdős – Szekeres Theorem : Upper Bounds and Related Results , 2004 .
[28] Lior Pachter,et al. Finding Convex Sets Among Points in the Plane , 1998, Discret. Comput. Geom..
[29] Esther E. Klein,et al. On some extremum problems in elementary geometry , 2006 .
[30] Mark H. Overmars. Finding Sets of Points without Empty Convex 6-Gons , 2003, Discret. Comput. Geom..
[31] R. P. Dilworth,et al. A DECOMPOSITION THEOREM FOR PARTIALLY ORDERED SETS , 1950 .
[32] Ruy Fabila Monroy,et al. Empty monochromatic triangles , 2009, Comput. Geom..
[33] A. Meir,et al. On empty triangles determined by points in the plane , 1988 .
[34] G. Szekeres,et al. A combinatorial problem in geometry , 2009 .
[35] Ferran Hurtado,et al. Large Bichromatic Point Sets Admit Empty Monochromatic 4-Gons , 2010, SIAM J. Discret. Math..
[36] J. Horton. Sets with No Empty Convex 7-Gons , 1983, Canadian Mathematical Bulletin.