Zeros of the i.i.d. Gaussian power series: a conformally invariant determinantal process
暂无分享,去创建一个
[1] Lebowitz,et al. Gaussian fluctuation in random matrices. , 1994, Physical review letters.
[2] Persi Diaconis,et al. Linear functionals of eigenvalues of random matrices , 2000 .
[3] J. Pitman. Combinatorial Stochastic Processes , 2006 .
[4] J. Hannay,et al. Chaotic analytic zero points: exact statistics for those of a random spin state , 1996 .
[5] SU(1, 1) Random Polynomials , 2001, math-ph/0103037.
[6] E. Kostlan. On the Distribution of Roots of Random Polynomials , 1993 .
[7] G. Andrews,et al. Encyclopedia of Mathematics and its Applications , 1990 .
[8] Александр Борисович Сошников,et al. Детерминантные случайные точечные поля@@@Determinantal random point fields , 2000 .
[9] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[10] Igor Pak,et al. Partition bijections, a survey , 2006 .
[11] Leboeuf,et al. Distribution of roots of random polynomials. , 1992, Physical review letters.
[12] H. Iwaniec,et al. Analytic Number Theory , 2004 .
[13] Donald J. Newman. Analytic Number Theory , 1997 .
[14] T. Muir. The Theory of Determinants in the Historical Order of Development , 1920 .
[15] D. Pollard. A User's Guide to Measure Theoretic Probability by David Pollard , 2001 .
[16] T. Muir. The Theory of Determinants in the Historical Order of Development. Vol. II , 1912 .
[17] I. Ibragimov,et al. Norms of Gaussian sample functions , 1976 .
[18] Random complex zeroes, I. Asymptotic normality , 2002, math/0210090.
[19] B. Simon. Functional integration and quantum physics , 1979 .
[20] C. W. Borchardt. Bestimmung der symmetrischen Verbindungen vermittelst ihrer erzeugenden Function. , 1857 .
[21] David Williams,et al. Probability with Martingales , 1991, Cambridge mathematical textbooks.
[22] Alan Edelman,et al. How many zeros of a random polynomial are real , 1995 .
[23] A. Soshnikov. Determinantal random point fields , 2000, math/0002099.
[24] A. Soshnikov,et al. Gaussian Fluctuation for the Number of Particles in Airy, Bessel, Sine, and Other Determinantal Random Point Fields , 1999, math-ph/9907012.
[25] J. Hannay. The chaotic analytic function , 1998 .
[26] Alexander Soshnikov. Gaussian limit for determinantal random point fields , 2000 .
[27] P. Leboeuf. Random matrices, random polynomials and Coulomb systems , 1999, cond-mat/9911222.
[28] Mikhail Sodin. Zeroes of Gaussian analytic functions , 2000 .
[29] J. M. Hammersley,et al. The Zeros of a Random Polynomial , 1956 .
[30] T. Shirai,et al. Random point fields associated with certain Fredholm determinants I: fermion, Poisson and boson point processes , 2003 .
[31] R. Bellman. Introduction To Matrix Analysis Second Edition , 1997 .
[32] T. B.,et al. The Theory of Determinants , 1904, Nature.
[33] Universality and scaling of correlations between zeros on complex manifolds , 1999, math-ph/9904020.
[34] Eric Kostlan,et al. On the spectra of Gaussian matrices , 1992 .
[35] Lars V. Ahlfors. An introduction to the theory of analytic functions of one complex variable , 1978 .
[36] H. Hochstadt. Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable; 3rd ed. (Lars V. Ahlfors) , 1980 .
[37] Steve Zelditch,et al. EQUILIBRIUM DISTRIBUTION OF ZEROS OF RANDOM POLYNOMIALS , 2002 .
[38] W. Rudin. Real and complex analysis , 1968 .
[39] N. Maslova. On the Distribution of the Number of Real Roots of Random Polynomials , 1975 .
[40] Joel Friedman. Random Polynomials and Approximate Zeros of Newton's Method , 1990, SIAM J. Comput..
[41] The theory of determinants in the historical order of development , 1914 .