Zeros of the i.i.d. Gaussian power series: a conformally invariant determinantal process

Consider the zero set of the random power series f(z) = P anz n with i.i.d. complex Gaussian coefficientsan. We show that these zeros form a determinantal process: more precisely, their joint intensity can be written as a minor of the Bergman kernel. We show that the number of zeros of f in a disk of radius r about the origin has the same distribution as the sum of independent {0,1}-valued random variables Xk, where P(Xk = 1) = r 2k . Moreover, the set of absolute values of the zeros of f has the

[1]  Lebowitz,et al.  Gaussian fluctuation in random matrices. , 1994, Physical review letters.

[2]  Persi Diaconis,et al.  Linear functionals of eigenvalues of random matrices , 2000 .

[3]  J. Pitman Combinatorial Stochastic Processes , 2006 .

[4]  J. Hannay,et al.  Chaotic analytic zero points: exact statistics for those of a random spin state , 1996 .

[5]  SU(1, 1) Random Polynomials , 2001, math-ph/0103037.

[6]  E. Kostlan On the Distribution of Roots of Random Polynomials , 1993 .

[7]  G. Andrews,et al.  Encyclopedia of Mathematics and its Applications , 1990 .

[8]  Александр Борисович Сошников,et al.  Детерминантные случайные точечные поля@@@Determinantal random point fields , 2000 .

[9]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[10]  Igor Pak,et al.  Partition bijections, a survey , 2006 .

[11]  Leboeuf,et al.  Distribution of roots of random polynomials. , 1992, Physical review letters.

[12]  H. Iwaniec,et al.  Analytic Number Theory , 2004 .

[13]  Donald J. Newman Analytic Number Theory , 1997 .

[14]  T. Muir The Theory of Determinants in the Historical Order of Development , 1920 .

[15]  D. Pollard A User's Guide to Measure Theoretic Probability by David Pollard , 2001 .

[16]  T. Muir The Theory of Determinants in the Historical Order of Development. Vol. II , 1912 .

[17]  I. Ibragimov,et al.  Norms of Gaussian sample functions , 1976 .

[18]  Random complex zeroes, I. Asymptotic normality , 2002, math/0210090.

[19]  B. Simon Functional integration and quantum physics , 1979 .

[20]  C. W. Borchardt Bestimmung der symmetrischen Verbindungen vermittelst ihrer erzeugenden Function. , 1857 .

[21]  David Williams,et al.  Probability with Martingales , 1991, Cambridge mathematical textbooks.

[22]  Alan Edelman,et al.  How many zeros of a random polynomial are real , 1995 .

[23]  A. Soshnikov Determinantal random point fields , 2000, math/0002099.

[24]  A. Soshnikov,et al.  Gaussian Fluctuation for the Number of Particles in Airy, Bessel, Sine, and Other Determinantal Random Point Fields , 1999, math-ph/9907012.

[25]  J. Hannay The chaotic analytic function , 1998 .

[26]  Alexander Soshnikov Gaussian limit for determinantal random point fields , 2000 .

[27]  P. Leboeuf Random matrices, random polynomials and Coulomb systems , 1999, cond-mat/9911222.

[28]  Mikhail Sodin Zeroes of Gaussian analytic functions , 2000 .

[29]  J. M. Hammersley,et al.  The Zeros of a Random Polynomial , 1956 .

[30]  T. Shirai,et al.  Random point fields associated with certain Fredholm determinants I: fermion, Poisson and boson point processes , 2003 .

[31]  R. Bellman Introduction To Matrix Analysis Second Edition , 1997 .

[32]  T. B.,et al.  The Theory of Determinants , 1904, Nature.

[33]  Universality and scaling of correlations between zeros on complex manifolds , 1999, math-ph/9904020.

[34]  Eric Kostlan,et al.  On the spectra of Gaussian matrices , 1992 .

[35]  Lars V. Ahlfors An introduction to the theory of analytic functions of one complex variable , 1978 .

[36]  H. Hochstadt Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable; 3rd ed. (Lars V. Ahlfors) , 1980 .

[37]  Steve Zelditch,et al.  EQUILIBRIUM DISTRIBUTION OF ZEROS OF RANDOM POLYNOMIALS , 2002 .

[38]  W. Rudin Real and complex analysis , 1968 .

[39]  N. Maslova On the Distribution of the Number of Real Roots of Random Polynomials , 1975 .

[40]  Joel Friedman Random Polynomials and Approximate Zeros of Newton's Method , 1990, SIAM J. Comput..

[41]  The theory of determinants in the historical order of development , 1914 .