Stationary Processes, Statistical Estimation For
暂无分享,去创建一个
[1] Christos Alexopoulos,et al. Output Data Analysis , 2007 .
[2] George S. Fishman,et al. Discrete-event simulation , 2001 .
[3] B. Schmeiser,et al. Optimal mean-squared-error batch sizes , 1995 .
[4] George S. Fishman,et al. An Implementation of the Batch Means Method , 1997, INFORMS J. Comput..
[5] Wheyming Tina Song,et al. On the estimation of optimal batch sizes in the analysis of simulation output , 1996 .
[6] Chiahon Chien. Small-sample theory for steady state confidence intervals , 1988, WSC '88.
[7] P. Glynn,et al. A batch means methodology for estimation of a nonlinear function of a steady-state mean , 1997 .
[8] Emily K. Lada,et al. ASAP3: a batch means procedure for steady-state simulation analysis , 2005, TOMC.
[9] Andrew F. Seila. Multivariate Simulation Output Analysis , 1984 .
[10] Philip Heidelberger,et al. Simulation Run Length Control in the Presence of an Initial Transient , 1983, Oper. Res..
[11] L. Schruben,et al. Properties of standardized time series weighted area variance estimators , 1990 .
[12] Lee W. Schruben,et al. Note-New Confidence Interval Estimators Using Standardized Time Series , 1990 .
[13] Lee W. Schruben,et al. Confidence Interval Estimation Using Standardized Time Series , 1983, Oper. Res..
[14] Philip Heidelberger,et al. A spectral method for confidence interval generation and run length control in simulations , 1981, CACM.
[15] Richard W. Conway,et al. Some Tactical Problems in Digital Simulation , 1963 .
[16] Ward Whitt,et al. Estimating the asymptotic variance with batch means , 1991, Oper. Res. Lett..
[17] Donald L. Iglehart,et al. Simulation Output Analysis Using Standardized Time Series , 1990, Math. Oper. Res..
[18] J. Neumann. Distribution of the Ratio of the Mean Square Successive Difference to the Variance , 1941 .
[19] L. C. Young,et al. On Randomness in Ordered Sequences , 1941 .
[20] A. F. Seila,et al. A Batching Approach to Quantile Estimation in Regenerative Simulations , 1982 .
[21] H. Damerdji,et al. Strong consistency and other properties of the spectral variance estimator , 1991 .
[22] David Goldsman,et al. To batch or not to batch? , 2004, TOMC.
[23] George S. Fishman,et al. Statistical Analysis for Queueing Simulations , 1973 .
[24] Keebom Kang,et al. Cramér-von Mises variance estimators for simulations , 1991, WSC '91.
[25] Averill M. Law,et al. A Sequential Procedure for Determining the Length of a Steady-State Simulation , 1979, Oper. Res..
[26] David Goldsman,et al. Large-Sample Results for Batch Means , 1997 .
[27] Bruce W. Schmeiser,et al. Batch Size Effects in the Analysis of Simulation Output , 1982, Oper. Res..
[28] Keebom Kang,et al. An Investigation of Finite-Sample Behavior of Confidence Interval Estimators , 1992, Oper. Res..
[29] Halim Damerdji,et al. Strong Consistency of the Variance Estimator in Steady-State Simulation Output Analysis , 1994, Math. Oper. Res..
[30] G. S. Fishman. Grouping Observations in Digital Simulation , 1978 .
[31] W. Philipp,et al. Almost sure invariance principles for partial sums of weakly dependent random variables , 1975 .
[32] P. Heidelberger,et al. Adaptive spectral methods for simulation output analysis , 1981 .
[33] Philip Heidelberger,et al. Quantile Estimation in Dependent Sequences , 1984, Oper. Res..