Stationary Processes, Statistical Estimation For

[1]  Christos Alexopoulos,et al.  Output Data Analysis , 2007 .

[2]  George S. Fishman,et al.  Discrete-event simulation , 2001 .

[3]  B. Schmeiser,et al.  Optimal mean-squared-error batch sizes , 1995 .

[4]  George S. Fishman,et al.  An Implementation of the Batch Means Method , 1997, INFORMS J. Comput..

[5]  Wheyming Tina Song,et al.  On the estimation of optimal batch sizes in the analysis of simulation output , 1996 .

[6]  Chiahon Chien Small-sample theory for steady state confidence intervals , 1988, WSC '88.

[7]  P. Glynn,et al.  A batch means methodology for estimation of a nonlinear function of a steady-state mean , 1997 .

[8]  Emily K. Lada,et al.  ASAP3: a batch means procedure for steady-state simulation analysis , 2005, TOMC.

[9]  Andrew F. Seila Multivariate Simulation Output Analysis , 1984 .

[10]  Philip Heidelberger,et al.  Simulation Run Length Control in the Presence of an Initial Transient , 1983, Oper. Res..

[11]  L. Schruben,et al.  Properties of standardized time series weighted area variance estimators , 1990 .

[12]  Lee W. Schruben,et al.  Note-New Confidence Interval Estimators Using Standardized Time Series , 1990 .

[13]  Lee W. Schruben,et al.  Confidence Interval Estimation Using Standardized Time Series , 1983, Oper. Res..

[14]  Philip Heidelberger,et al.  A spectral method for confidence interval generation and run length control in simulations , 1981, CACM.

[15]  Richard W. Conway,et al.  Some Tactical Problems in Digital Simulation , 1963 .

[16]  Ward Whitt,et al.  Estimating the asymptotic variance with batch means , 1991, Oper. Res. Lett..

[17]  Donald L. Iglehart,et al.  Simulation Output Analysis Using Standardized Time Series , 1990, Math. Oper. Res..

[18]  J. Neumann Distribution of the Ratio of the Mean Square Successive Difference to the Variance , 1941 .

[19]  L. C. Young,et al.  On Randomness in Ordered Sequences , 1941 .

[20]  A. F. Seila,et al.  A Batching Approach to Quantile Estimation in Regenerative Simulations , 1982 .

[21]  H. Damerdji,et al.  Strong consistency and other properties of the spectral variance estimator , 1991 .

[22]  David Goldsman,et al.  To batch or not to batch? , 2004, TOMC.

[23]  George S. Fishman,et al.  Statistical Analysis for Queueing Simulations , 1973 .

[24]  Keebom Kang,et al.  Cramér-von Mises variance estimators for simulations , 1991, WSC '91.

[25]  Averill M. Law,et al.  A Sequential Procedure for Determining the Length of a Steady-State Simulation , 1979, Oper. Res..

[26]  David Goldsman,et al.  Large-Sample Results for Batch Means , 1997 .

[27]  Bruce W. Schmeiser,et al.  Batch Size Effects in the Analysis of Simulation Output , 1982, Oper. Res..

[28]  Keebom Kang,et al.  An Investigation of Finite-Sample Behavior of Confidence Interval Estimators , 1992, Oper. Res..

[29]  Halim Damerdji,et al.  Strong Consistency of the Variance Estimator in Steady-State Simulation Output Analysis , 1994, Math. Oper. Res..

[30]  G. S. Fishman Grouping Observations in Digital Simulation , 1978 .

[31]  W. Philipp,et al.  Almost sure invariance principles for partial sums of weakly dependent random variables , 1975 .

[32]  P. Heidelberger,et al.  Adaptive spectral methods for simulation output analysis , 1981 .

[33]  Philip Heidelberger,et al.  Quantile Estimation in Dependent Sequences , 1984, Oper. Res..