A Closer Look at Generalisation in RAVEN

[1]  Joelle Pineau,et al.  Spatially Invariant Unsupervised Object Detection with Convolutional Neural Networks , 2019, AAAI.

[2]  Kecheng Zheng,et al.  Abstract Reasoning with Distracting Features , 2019, NeurIPS.

[3]  D. Gentner,et al.  Structure mapping in analogy and similarity. , 1997 .

[4]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Felix Hill,et al.  Measuring abstract reasoning in neural networks , 2018, ICML.

[6]  John McCarthy,et al.  A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955 , 2006, AI Mag..

[7]  Geoffrey E. Hinton,et al.  Attend, Infer, Repeat: Fast Scene Understanding with Generative Models , 2016, NIPS.

[8]  Stefan Lee,et al.  Graph R-CNN for Scene Graph Generation , 2018, ECCV.

[9]  Feng Gao,et al.  RAVEN: A Dataset for Relational and Analogical Visual REasoNing , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Jürgen Schmidhuber,et al.  R-SQAIR: Relational Sequential Attend, Infer, Repeat , 2019, ArXiv.

[11]  Ingmar Posner,et al.  GENESIS: Generative Scene Inference and Sampling with Object-Centric Latent Representations , 2019, ICLR.

[12]  Andrew Zisserman,et al.  Spatial Transformer Networks , 2015, NIPS.

[13]  Roger B. Grosse,et al.  Isolating Sources of Disentanglement in Variational Autoencoders , 2018, NeurIPS.

[14]  Max Welling,et al.  Modeling Relational Data with Graph Convolutional Networks , 2017, ESWC.

[15]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[16]  J. Raven The Raven's Progressive Matrices: Change and Stability over Culture and Time , 2000, Cognitive Psychology.

[17]  Pietro Lio',et al.  Unsupervised and interpretable scene discovery with Discrete-Attend-Infer-Repeat , 2019, ArXiv.

[18]  Noah D. Goodman,et al.  Pyro: Deep Universal Probabilistic Programming , 2018, J. Mach. Learn. Res..

[19]  Sjoerd van Steenkiste,et al.  Are Disentangled Representations Helpful for Abstract Visual Reasoning? , 2019, NeurIPS.

[20]  Kenneth D. Forbus,et al.  Modeling Visual Problem Solving as Analogical Reasoning , 2017, Psychological review.

[21]  Tim Verbelen,et al.  Improving Generalization for Abstract Reasoning Tasks Using Disentangled Feature Representations , 2018, NIPS 2018.

[22]  Luca Antiga,et al.  Automatic differentiation in PyTorch , 2017 .

[23]  Andriy Mnih,et al.  Disentangling by Factorising , 2018, ICML.

[24]  Christopher Burgess,et al.  beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework , 2016, ICLR 2016.

[25]  Florentin Wörgötter,et al.  Attention on Abstract Visual Reasoning , 2019, ArXiv.