Microstructure and high-temperature wear mechanism of laser cladded CoCrBFeNiSi high-entropy alloy amorphous coating

[1]  C. Dong,et al.  Influence of laser power on microstructure and properties of laser clad Co-based amorphous composite coatings , 2017 .

[2]  G. Schütz,et al.  Ferromagnetic behaviour of ZnO: the role of grain boundaries , 2016, Beilstein journal of nanotechnology.

[3]  B. Liu,et al.  Synthesis of amorphous coating by laser cladding multi-layer Co-based self-fluxed alloy powder , 2016 .

[4]  K. Dahmen,et al.  Microstructures and properties of high-entropy alloys , 2014 .

[5]  Min Xu,et al.  Thermal stability and magnetic properties of Fe–Co–M–Zr–Nb–Ge–B (M=Mo, Cr) bulk metallic glasses , 2014 .

[6]  Jien-Wei Yeh,et al.  Alloy Design Strategies and Future Trends in High-Entropy Alloys , 2013 .

[7]  Zhipeng Li,et al.  Microstructure and property of Fe-Co-B-Si-C-Nb amorphous composite coating fabricated by laser cladding process , 2013 .

[8]  Hui Zhang,et al.  Enhanced hardness and fracture toughness of the laser-solidified FeCoNiCrCuTiMoAlSiB0.5 high-entropy alloy by martensite strengthening , 2013 .

[9]  S. Protasova,et al.  Inversed solid-phase grain boundary wetting in the Al–Zn system , 2011 .

[10]  Brent Fultz,et al.  Vibrational thermodynamics of materials , 2010 .

[11]  K. B. Kim,et al.  Crystallization behaviour in a new multicomponent Ti16.6Zr16.6Hf16.6Ni20Cu20Al10 metallic glass developed by the equiatomic substitution technique , 2003 .

[12]  A. Inoue,et al.  Bulk Glassy Alloys in (Fe, Co, Ni)-Si-B System , 2001 .

[13]  A. Inoue Stabilization of metallic supercooled liquid and bulk amorphous alloys , 2000 .