Research progress on polymer–inorganic thermoelectric nanocomposite materials

[1]  Qing Zhao,et al.  Synthesis and characterization of Bi2Te3/polyaniline composites , 2011 .

[2]  X. Crispin,et al.  Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). , 2011, Nature materials.

[3]  Baoyang Lu,et al.  Free-Standing PEDOT-PSS/Ca3Co4O9 Composite Films as Novel Thermoelectric Materials , 2011 .

[4]  N. Toshima,et al.  Organic–Inorganic Nanohybrids as Novel Thermoelectric Materials: Hybrids of Polyaniline and Bismuth(III) Telluride Nanoparticles , 2011 .

[5]  Lei Wang,et al.  Thermoelectric properties of conducting polyaniline/graphite composites , 2011 .

[6]  K. Cai,et al.  Facile fabrication and thermoelectric properties of PbTe-modified poly(3,4-ethylenedioxythiophene) nanotubes. , 2011, ACS applied materials & interfaces.

[7]  Baoyang Lu,et al.  Facile electrosynthesis and thermoelectric performance of electroactive free-standing polythieno[3,2-b]thiophene films , 2011 .

[8]  Baoyang Lu,et al.  Simultaneous Enhancement of Electrical Conductivity and Seebeck Coefficient of Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Films Treated with Urea , 2011 .

[9]  Kefeng Cai,et al.  In situ fabrication and thermoelectric properties of PbTe–polyaniline composite nanostructures , 2011 .

[10]  Koji Miyazaki,et al.  Enhanced figure of merit of a porous thin film of bismuth antimony telluride , 2011 .

[11]  R. Penner,et al.  Enhanced thermoelectric metrics in ultra-long electrodeposited PEDOT nanowires. , 2011, Nano letters.

[12]  Baoyang Lu,et al.  Thermoelectric Performance of Poly(3,4-Ethylenedioxy-thiophene)/Poly(Styrenesulfonate) Pellets and Films , 2011 .

[13]  H. Li,et al.  The Influence of Sintering Temperature on the Microstructure and Thermoelectric Properties of n-Type Bi2Te3−xSex Nanomaterials , 2010 .

[14]  R. Opila,et al.  Promising thermoelectric properties of commercial PEDOT:PSS materials and their bi2Te3 powder composites. , 2010, ACS applied materials & interfaces.

[15]  Daoben Zhu,et al.  A three-in-one improvement in thermoelectric properties of polyaniline brought by nanostructures , 2010 .

[16]  Kevin C. See,et al.  Water-processable polymer-nanocrystal hybrids for thermoelectrics. , 2010, Nano letters.

[17]  Terry M. Tritt,et al.  Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi,Sb)2Te3 nanocomposites. , 2010, Nano letters.

[18]  C. Adachi,et al.  Improved thermoelectric performance of organic thin-film elements utilizing a bilayer structure of pentacene and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) , 2010 .

[19]  Uli Lemmer,et al.  Organic Semiconductors for Thermoelectric Applications , 2010 .

[20]  Qingjie Zhang,et al.  Synthesis and thermoelectric properties of hydrochloric acid-doped polyaniline , 2010 .

[21]  Lu Baoyang,et al.  Thermoelectric Performances of Free-Standing Polythiophene and Poly(3-Methylthiophene) Nanofilms , 2010 .

[22]  Y. Miyazaki,et al.  Rubbing effect on surface morphology and thermoelectric properties of TTF–TCNQ thin films , 2010 .

[23]  Wenqing Zhang,et al.  Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites. , 2010, ACS nano.

[24]  A. Majumdar,et al.  Simultaneous Increase in Seebeck Coefficient and Conductivity in a Doped Poly(alkylthiophene) Blend with Defined Density of States , 2010 .

[25]  Changhong Liu,et al.  A Promising Approach to Enhanced Thermoelectric Properties Using Carbon Nanotube Networks , 2010, Advanced materials.

[26]  Choongho Yu,et al.  Improved thermoelectric behavior of nanotube-filled polymer composites with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate). , 2010, ACS nano.

[27]  M. Singla,et al.  Comparative study of synthesis, characterization and electric properties of polypyrrole and polythiophene composites with tellurium oxide , 2009 .

[28]  J. Lee,et al.  PROGRESS IN PREPARATION, PROCESSING AND APPLICATIONS OF POLYANILINE , 2009 .

[29]  H. Nakanishi,et al.  Evaluation of Thermoelectric Properties of Polythiophene Films Synthesized by Electrolytic Polymerization , 2009 .

[30]  R. Asahi,et al.  Preparation of Conducting Polyaniline–Bismuth Nanoparticle Composites by Planetary Ball Milling , 2009 .

[31]  Kuei-Chien Chang,et al.  The Thermoelectric Performance of Poly(3,4-ethylenedi oxythiophene)/Poly(4-styrenesulfonate) Thin Films , 2009 .

[32]  R. Asahi,et al.  Thermoelectric Properties of Organic Charge-Transfer Compounds , 2009 .

[33]  Han Li,et al.  High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase , 2009 .

[34]  Qingjie Zhang,et al.  Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys , 2009 .

[35]  M. Leclerc,et al.  Electrical and Thermoelectric Properties of Poly(2,7-Carbazole) Derivatives , 2009 .

[36]  Choongho Yu,et al.  Thermoelectric behavior of segregated-network polymer nanocomposites. , 2008, Nano letters.

[37]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[38]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[39]  T. Sun,et al.  Nanostructures in high-performance (GeTe)x(AgSbTe2)100−x thermoelectric materials , 2008, Nanotechnology.

[40]  Baoyang Lu,et al.  Thermoelectric Performance of Poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) , 2008 .

[41]  Tiejun Zhu,et al.  Syntheses and thermoelectric properties of Bi2Te3/Sb2Te3 bulk nanocomposites with laminated nanostructure , 2008 .

[42]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[43]  A. Majumdar,et al.  Enhanced Thermoelectric Performance in Rough Silicon Nanowires , 2008 .

[44]  Min Zhou,et al.  Nanostructured AgPb(m)SbTe(m+2) system bulk materials with enhanced thermoelectric performance. , 2008, Journal of the American Chemical Society.

[45]  F. Yakuphanoglu,et al.  Electrical Conductivity, Thermoelectric Power, and Optical Properties of Organo-Soluble Polyaniline Organic Semiconductor , 2008 .

[46]  William A. Goddard,et al.  Silicon nanowires as efficient thermoelectric materials , 2008, Nature.

[47]  P. Makra,et al.  Characterization of poly(3-octylthiophene)/silver nanocomposites prepared by solution doping , 2007 .

[48]  H. Oikawa,et al.  The effect of carrier conduction between main chains on thermoelectric properties of polythiophene , 2007, 2007 26th International Conference on Thermoelectrics.

[49]  N. Toshima,et al.  Thermoelectric figure-of-merit of iodine-doped copolymer of phenylenevinylene with dialkoxyphenylenevinylene , 2007 .

[50]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[51]  M. Leclerc,et al.  Synthesis and Thermoelectric Properties of Polycarbazole, Polyindolocarbazole, and Polydiindolocarbazole Derivatives , 2007 .

[52]  Y. Imai,et al.  A New Challenge of Polymer Thermoelectric Materials as Ecomaterials , 2007 .

[53]  Hideo Hosono,et al.  Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. , 2007, Nature materials.

[54]  Naoki Toshima,et al.  High thermoelectric performance of poly (2,5 -dimethoxyphenylenevinylene) and its derivatives , 2006 .

[55]  N. T. Kemp,et al.  Effect of ammonia on the temperature-dependent conductivity and thermopower of polypyrrole , 2006 .

[56]  Dmitri O. Klenov,et al.  Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. , 2006, Physical review letters.

[57]  M. Leclerc,et al.  Highly soluble poly(2,7-carbazolenevinylene) for thermoelectrical applications : From theory to experiment , 2005 .

[58]  K. Kudo,et al.  Organic nano-transistor fabricated by co-evaporation method under alternating electric field , 2005 .

[59]  M. Dresselhaus,et al.  Thermal conductivity of simple and tubular nanowire composites in the longitudinal direction , 2005 .

[60]  J. Tse,et al.  Theoretical studies on the thermopower of semiconductors and low-band-gap crystalline polymers , 2005 .

[61]  M. P. Walsh,et al.  Nanostructured thermoelectric materials , 2005 .

[62]  Eric Hu,et al.  Development of a cooling fabric from conducting polymer coated fibres: proof of concept , 2005 .

[63]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[64]  A. Majumdar Thermoelectricity in Semiconductor Nanostructures , 2004, Science.

[65]  L. Jun,et al.  Synthesis and thermoelectric properties of polyaniline , 2003 .

[66]  M. P. Walsh,et al.  Quantum Dot Superlattice Thermoelectric Materials and Devices , 2002, Science.

[67]  Yu-Ming Lin,et al.  Semimetal–semiconductor transition in Bi1−xSbx alloy nanowires and their thermoelectric properties , 2002 .

[68]  Naoki Toshima,et al.  Conductive polymers as a new type of thermoelectric material , 2002 .

[69]  Naoki Toshima,et al.  Thermal transporting properties of electrically conductive polyaniline films as organic thermoelectric materials , 2002 .

[70]  Jae Hoon Jung,et al.  Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents , 2002 .

[71]  M. Leclerc,et al.  Electrochemical, Conductive, and Magnetic Properties of 2,7-Carbazole-Based Conjugated Polymers , 2002 .

[72]  Hong Liu,et al.  Structure and electronic transport properties of polyaniline/NaFe4P12 composite , 2002 .

[73]  M. Kanatzidis,et al.  Electronic structure of CsBi 4 Te 6 : A high-performance thermoelectric at low temperatures , 2002 .

[74]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[75]  H. Yan,et al.  Stretched polyaniline films doped by (±)-10-camphorsulfonic acid : Anisotropy and improvement of thermoelectric properties , 2001 .

[76]  Uher,et al.  CsBi(4)Te(6): A high-performance thermoelectric material for low-temperature applications , 2000, Science.

[77]  H. Yan,et al.  Thermoelectric Properties of Alternatively Layered Films of Polyaniline and (±)-10-Camphorsulfonic Acid-Doped Polyaniline , 1999 .

[78]  F. Disalvo,et al.  Thermoelectric cooling and power generation , 1999, Science.

[79]  B. Lucas,et al.  Thermoelectric power stability of the polyparaphenylene implanted with cesium ions , 1999 .

[80]  D. Suh,et al.  Magneto thermoelectric power of the doped polyacetylene , 1999 .

[81]  N. T. Kemp,et al.  Thermoelectric power and conductivity of different types of polypyrrole , 1999 .

[82]  J. Schlenoff,et al.  Correlation of Seebeck coefficient and electric conductivity in polyaniline and polypyrrole , 1998 .

[83]  C. Moreau,et al.  Sensitive thermoelectric power and conductivity measurements on implanted polyparaphenylene thin films , 1997 .

[84]  M. Kanatzidis,et al.  Redox Intercalative Polymerization of Aniline in V2O5 Xerogel. The Postintercalative Intralamellar Polymer Growth in Polyaniline/Metal Oxide Nanocomposites Is Facilitated by Molecular Oxygen , 1996 .

[85]  M. Dresselhaus,et al.  Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit , 1996, Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96.

[86]  O. Ikkala,et al.  On the molecular recognition and associations between electrically conducting polyaniline and solvents , 1995 .

[87]  C. O. Yoon,et al.  Thermoelectric power of doped polyaniline near the metal-insulator transition , 1995 .

[88]  Jeeyoung Yoo,et al.  Positive-thermoelectric power of alkali-metal-doped polyacetylene , 1994 .

[89]  S. Roth,et al.  Anisotropy of thermoelectric power of stretch-oriented new polyacetylene , 1994 .

[90]  Moses,et al.  Transport in polyaniline near the critical regime of the metal-insulator transition. , 1993, Physical review. B, Condensed matter.

[91]  Moses,et al.  Counterion-induced processibility of polyaniline: Thermoelectric power. , 1993, Physical review. B, Condensed matter.

[92]  Hafner,et al.  Ab initio molecular dynamics for open-shell transition metals. , 1993, Physical review. B, Condensed matter.

[93]  M. Dresselhaus,et al.  Thermoelectric figure of merit of a one-dimensional conductor. , 1993, Physical review. B, Condensed matter.

[94]  Mildred S. Dresselhaus,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical review. B, Condensed matter.

[95]  H. Kaneko,et al.  Magnetoresistance and thermoelectric power studies of metal-nonmetal transition in iodine-doped polyacetylene , 1993 .

[96]  A. Tracz,et al.  Thermoelectric power in reticulate doped polymers , 1993 .

[97]  Cruz,et al.  Granular-rod model for electronic conduction in polyaniline. , 1993, Physical review. B, Condensed matter.

[98]  Wang,et al.  Transport and EPR studies of polyaniline: A quasi-one-dimensional conductor with three-dimensional "metallic" states. , 1992, Physical review. B, Condensed matter.

[99]  K. Akagi,et al.  Thermoelectric power and conductivity of the stretch-oriented polyacetylene film doped with MoCl5 , 1991 .

[100]  K. Murata,et al.  Study on the electrical conduction mechanism of polypyrrole films , 1991 .

[101]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[102]  J. Unsworth,et al.  Thermoelectric power of polypyrrole , 1989 .

[103]  C. O. Yoon,et al.  Conductivity and thermoelectric power of the newly processed polyacetylene , 1989 .

[104]  J. Unsworth,et al.  Electrical conductivity and thermoelectric power of polypyrrole with different doping levels , 1988 .

[105]  P. Chaikin,et al.  Pressure dependence of the thermoelectric power of TTF-TCNQ , 1982 .

[106]  C. K. Chiang,et al.  Electrical Conductivity in Doped Polyacetylene. , 1977 .

[107]  J. F. Kwak,et al.  Anisotropic thermoelectric power of TTF-TCNQ☆ , 1975 .

[108]  T. Kistenmacher,et al.  The crystal structure of the 1:1 radical cation–radical anion salt of 2,2'-bis-l,3-dithiole (TTF) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) , 1974 .

[109]  O. Bubnova Thermoelectric properties of conducting polymers , 2013 .

[110]  Baoyang Lu,et al.  Synthesis, characterization, and thermoelectric properties of a conducting copolymer of 1,12-bis(carbazolyl)dodecane and thieno[3,2-b]thiophene , 2011, Journal of Solid State Electrochemistry.

[111]  G. Damian,et al.  TELLURIDES OCCURRENCES IN THE BAIA MARE REGION, ROMANIA , 2009 .

[112]  X. Zhao,et al.  Thermoelectric properties of Bi0.5Sb1.5Te3/polyaniline hybrids prepared by mechanical blending , 2002 .

[113]  J. Travers,et al.  Effect of aging induced disorder on transport properties of PANI-CSA , 1997 .

[114]  Young-Seok Park,et al.  Low temperature thermoelectric power of the metal-halide doped polyacetylene , 1997 .

[115]  Yuri Choi,et al.  Metallic electrical transport of PF6-doped polypyrrole : dc conductivity and thermoelectric power , 1997 .

[116]  A. Heeger,et al.  Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x , 1977 .