Compressive 3D ultrasound imaging using a single sensor

Compressive 3D ultrasound imaging is possible with only one sensor and a simple aperture coding mask. Three-dimensional ultrasound is a powerful imaging technique, but it requires thousands of sensors and complex hardware. Very recently, the discovery of compressive sensing has shown that the signal structure can be exploited to reduce the burden posed by traditional sensing requirements. In this spirit, we have designed a simple ultrasound imaging device that can perform three-dimensional imaging using just a single ultrasound sensor. Our device makes a compressed measurement of the spatial ultrasound field using a plastic aperture mask placed in front of the ultrasound sensor. The aperture mask ensures that every pixel in the image is uniquely identifiable in the compressed measurement. We demonstrate that this device can successfully image two structured objects placed in water. The need for just one sensor instead of thousands paves the way for cheaper, faster, simpler, and smaller sensing devices and possible new clinical applications.

[1]  Paul C. Beard,et al.  A real-time ultrasonic field mapping system using a Fabry Pérot single pixel camera for 3D photoacoustic imaging , 2015, Photonics West - Biomedical Optics.

[2]  G. Schmitz,et al.  Fast pulse-echo ultrasound imaging employing compressive sensing , 2011, 2011 IEEE International Ultrasonics Symposium.

[3]  C. C. Law,et al.  ParaView: An End-User Tool for Large-Data Visualization , 2005, The Visualization Handbook.

[4]  P.J. White,et al.  Two-Dimensional Localization with a Single Diffuse Ultrasound Field Excitation , 2007, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[5]  E Merz,et al.  25 Years of 3D Ultrasound in Prenatal Diagnosis (1989–2014) , 2015, Ultraschall in der Medizin.

[6]  Mathias Fink,et al.  Acoustic imaging device with one transducer. , 2012, The Journal of the Acoustical Society of America.

[7]  T. Nelson,et al.  Three-dimensional ultrasound imaging. , 1998, Ultrasound in medicine & biology.

[8]  Kim C. Benjamin,et al.  Forward and backward projection of acoustic fields using FFT methods , 1981 .

[9]  Laurent Daudet,et al.  Imaging With Nature: Compressive Imaging Using a Multiply Scattering Medium , 2013, Scientific Reports.

[10]  K. Kirk Shung,et al.  Ultrasonic transducers and arrays , 1996 .

[11]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[12]  M. Fink,et al.  Time reversal of ultrasonic fields. I. Basic principles , 1992, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[13]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[14]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[15]  F. Can Meral,et al.  Two-dimensional image reconstruction with spectrally-randomized ultrasound signals , 2013, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[16]  Ting Sun,et al.  Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..

[17]  Massimo Fornasier,et al.  Compressive Sensing , 2015, Handbook of Mathematical Methods in Imaging.

[18]  Gregory T. Clement,et al.  Two-dimensional ultrasound detection with unfocused frequency-randomized signals. , 2007, The Journal of the Acoustical Society of America.

[19]  E. Caroli,et al.  Coded aperture imaging in X- and gamma-ray astronomy , 1987 .

[20]  Mathias Fink,et al.  Time reversal kaleidoscope: A smart transducer for three-dimensional ultrasonic imaging , 2004 .

[21]  William D. O'Brien,et al.  A regularized inverse approach to ultrasonic pulse-echo imaging , 2006, IEEE Transactions on Medical Imaging.

[22]  Adrian Basarab,et al.  Frequency Domain Compressive Sampling for Ultrasound Imaging , 2012 .

[23]  P. Hansen Discrete Inverse Problems: Insight and Algorithms , 2010 .

[24]  R.G. Baraniuk,et al.  Compressive Sensing [Lecture Notes] , 2007, IEEE Signal Processing Magazine.

[25]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[26]  K. Thomenius,et al.  Evolution of ultrasound beamformers , 1996, 1996 IEEE Ultrasonics Symposium. Proceedings.

[27]  B T Cox,et al.  k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. , 2010, Journal of biomedical optics.

[28]  Roland Stoughton,et al.  Source imaging with minimum mean‐squared error , 1993 .

[29]  Denis Friboulet,et al.  Compressive sensing in medical ultrasound , 2012, 2012 IEEE International Ultrasonics Symposium.

[30]  Grover A. Swartzlander,et al.  Randomized Aperture Imaging , 2016, 1601.00033.

[31]  Neil Savage,et al.  Digital spatial light modulators , 2009 .

[32]  Jørgen Arendt Jensen,et al.  Investigation of an angular spectrum approach for pulsed ultrasound fields. , 2013, Ultrasonics.

[33]  Mathias Fink,et al.  One-channel time-reversal in chaotic cavities: Experimental results , 1999 .

[34]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[35]  Lianlin Li,et al.  Single-shot and single-sensor high/super-resolution microwave imaging based on metasurface , 2016, Scientific Reports.

[36]  David Shrekenhamer,et al.  Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator. , 2013, Optics express.

[37]  M. Fink,et al.  Building three-dimensional images using a time-reversal chaotic cavity , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[38]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[39]  José M. Bioucas-Dias,et al.  A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration , 2007, IEEE Transactions on Image Processing.

[40]  Bradley E. Treeby,et al.  Generating arbitrary ultrasound fields with tailored optoacoustic surface profiles , 2017 .

[41]  Peer Fischer,et al.  Holograms for acoustics , 2016, Nature.

[42]  Rebecca Willett,et al.  Compressive coded aperture imaging , 2009, Electronic Imaging.

[43]  Yonina C. Eldar,et al.  Compressed Beamforming in Ultrasound Imaging , 2012, IEEE Transactions on Signal Processing.

[44]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..