Phase separation and microstructure of BaTiO3–CoFe2O4 epitaxial nanocomposite films deposited under low working pressure

0.6 BaTiO3–0.4CoFe2O4 (BTO-CFO) composite thin films were deposited under various working pressures on SrTiO3 (100) substrates by pulsed laser deposition. The phase separation and the microstructure of the composite film were investigated by x-ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy, and energy dispersive x-ray spectroscopy. The separation of the BTO and CFO phases started at a lower substrate temperature and full width at half maximum values for BTO and CFO were smaller in the heteroepitaxial composite film deposited under a low working pressure of 0.1 mTorr than the composite film deposited under 100 mTorr. The BTO-CFO heteroepitaxial nanocomposite film exhibited a typical 1–3 nanostructure, rectangular-shaped CFO nanopillars with a lateral size of 20–50 nm embedded in the continuous BTO matrix phase, when deposited at 750 °C under 0.1 mTorr.

[1]  R. Ramesh,et al.  Heteroepitaxially enhanced magnetic anisotropy in BaTiO3–CoFe2O4 nanostructures , 2007 .

[2]  P. Bhattacharya,et al.  Multiferroic properties of Pb(Zr,Ti)O3∕CoFe2O4 composite thin films , 2006 .

[3]  Ramamoorthy Ramesh,et al.  Self‐Assembled Growth of BiFeO3–CoFe2O4 Nanostructures , 2006 .

[4]  A. Roytburd,et al.  Design of Self‐Assembled Multiferroic Nanostructures in Epitaxial Films , 2006 .

[5]  Jae Hyuck Jang,et al.  Magnetoelectric effects of nanoparticulate Pb(Zr0.52Ti0.48)O3–NiFe2O4 composite films , 2006, cond-mat/0606714.

[6]  R. Ramesh,et al.  Controlling self-assembled perovskite-spinel nanostructures. , 2006, Nano letters.

[7]  Elizabeth K. Reilly,et al.  Electric field-induced magnetization switching in epitaxial columnar nanostructures. , 2005, Nano letters.

[8]  J. Ouyang,et al.  Self-assembled multiferroic nanostructures in the CoFe2O4-PbTiO3 system , 2005 .

[9]  Ramamoorthy Ramesh,et al.  Three-dimensional heteroepitaxy in self-assembled BaTiO3–CoFe2O4 nanostructures , 2004 .

[10]  R Ramesh,et al.  Multiferroic BaTiO3-CoFe2O4 Nanostructures , 2004, Science.

[11]  Y. Tokura,et al.  Magnetic control of ferroelectric polarization , 2003, Nature.

[12]  R. Ramesh,et al.  Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures , 2003, Science.

[13]  Hans-Ulrich Krebs,et al.  Influence of inert gas pressure on deposition rate during pulsed laser deposition , 2002 .

[14]  A. V. Carazo,et al.  Magnetoelectric Properties in Piezoelectric and Magnetostrictive Laminate Composites , 2001 .

[15]  K. Sturm,et al.  Quantification of resputtering during pulsed laser deposition , 2001 .

[16]  Nicola A. Hill,et al.  Why Are There so Few Magnetic Ferroelectrics , 2000 .

[17]  S. Leppävuori,et al.  Sorption in pulsed laser deposition of multicomponent materials: Experiment versus modeling , 1999 .

[18]  M. Gomi,et al.  Room-temperature epitaxial growth of Ni-Zn ferrite thin films by pulsed laser deposition in high vacuum , 1997 .

[19]  F. Léonard,et al.  Molecular beam epitaxy in the presence of phase separation , 1997 .

[20]  D. R. Terrell,et al.  An in situ grown eutectic magnetoelectric composite material , 1974 .