Sustained Lithium‐Storage Performance of Hierarchical, Nanoporous Anatase TiO2 at High Rates: Emphasis on Interfacial Storage Phenomena

A hierarchical, nanoporous TiO2 structure is successfully prepared by a simple in situ hydrolysis method. Used as an anode material, it achieves a sustained high lithium storage performance especially at high charge/discharge rates due to its substantially high surface area. The material shows two different major storage modes: a) bulk insertion, and b) pseudo-capacitive interfacial storage, which is responsible for 64% of the total capacity. In order to kinetically emphasize the interfacial storage even further, we cycle the material directly at high rates, giving 302 mA h g−1 and 200 mA h g−1 of fully reversible discharge capacity at charge/discharge rates of 1 C and 5 C with very high cycle stability. We propose an overall view on the different Li insertion mechanisms of the high-surface-area nanoporous TiO2 and emphasize the importance of interfacial storage for electrode applications in Li-ion batteries.

[1]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[2]  Yu‐Guo Guo,et al.  Synthesis of hierarchically mesoporous anatase spheres and their application in lithium batteries. , 2006, Chemical communications.

[3]  P. Balaya,et al.  Nano-ionics in the context of lithium batteries , 2006 .

[4]  John Wang,et al.  Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles , 2007 .

[5]  Sarmimala Hore,et al.  Synthesis of Hierarchically Porous Carbon Monoliths with Highly Ordered Microstructure and Their Application in Rechargeable Lithium Batteries with High‐Rate Capability , 2007 .

[6]  K. Sing Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) , 1985 .

[7]  J. Banfield,et al.  Thermodynamic analysis of phase stability of nanocrystalline titania , 1998 .

[8]  Min Gyu Kim,et al.  Recent Progress in Nanostructured Cathode Materials for Lithium Secondary Batteries , 2010 .

[9]  E. Teller,et al.  On a Theory of the van der Waals Adsorption of Gases , 1940 .

[10]  Yu‐Guo Guo,et al.  Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity , 2006, Nature materials.

[11]  Hun‐Gi Jung,et al.  Mesoporous TiO2 nano networks: Anode for high power lithium battery applications , 2009 .

[12]  A. Hagfeldt,et al.  Li+ Ion Insertion in TiO2 (Anatase). 1. Chronoamperometry on CVD Films and Nanoporous Films , 1997 .

[13]  J. Jamnik,et al.  Nanocrystallinity effects in lithium battery materials , 2003 .

[14]  Xiao Hua Yang,et al.  Higher charge/discharge rates of lithium-ions across engineered TiO2 surfaces leads to enhanced battery performance. , 2010, Chemical communications.

[15]  K. Eberl,et al.  Mesoscopic fast ion conduction in nanometre-scale planar heterostructures , 2000, Nature.

[16]  L. Kavan,et al.  Rocking Chair Lithium Battery Based on Nanocrystalline TiO2 (Anatase) , 1995 .

[17]  L. Wan,et al.  Facile synthesis of nanoporous anatase spheres and their environmental applications. , 2008, Chemical communications.

[18]  C. M. Li,et al.  Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage. , 2010, Journal of the American Chemical Society.

[19]  Peter G. Bruce,et al.  Lithium‐Ion Intercalation into TiO2‐B Nanowires , 2005 .

[20]  M. Wagemaker,et al.  Large impact of particle size on insertion reactions. A case for anatase Li(x)TiO2. , 2007, Journal of the American Chemical Society.

[21]  G. Kearley,et al.  The influence of size on phase morphology and Li-ion mobility in nanosized lithiated anatase TiO2. , 2007, Chemistry.

[22]  Pierre Kubiak,et al.  Electrochemical performance of mesoporous TiO2 anatase , 2008 .

[23]  J. Maier Mass storage in space charge regions of nano-sized systems (Nano-ionics. Part V). , 2007, Faraday discussions.

[24]  J. Maier,et al.  High Lithium Electroactivity of Nanometer‐Sized Rutile TiO2 , 2006 .

[25]  David Grosso,et al.  Controlled formation of highly organized mesoporous titania thin films: from mesostructured hybrids to mesoporous nanoanatase TiO2. , 2003, Journal of the American Chemical Society.

[26]  J. Maier,et al.  Nanoionics: ion transport and electrochemical storage in confined systems , 2005, Nature materials.

[27]  Yu-Guo Guo,et al.  Superior Electrode Performance of Nanostructured Mesoporous TiO2 (Anatase) through Efficient Hierarchical Mixed Conducting Networks , 2007 .

[28]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[29]  D. Avnir,et al.  Recommendations for the characterization of porous solids (Technical Report) , 1994 .

[30]  P. Bruce,et al.  TiO2(B) Nanowires as an Improved Anode Material for Lithium‐Ion Batteries Containing LiFePO4 or LiNi0.5Mn1.5O4 Cathodes and a Polymer Electrolyte , 2006 .

[31]  J. Tarascon,et al.  Electrochemical lithium reactivity with nanotextured anatase-type TiO2 , 2005 .