Inclusion degree with variable-precision model in analyzing inconsistent decision tables

In this paper, we incorporate the concepts of evidence theory and variable precision rough set model (VP-model) to examine inconsistent decision tables. For the decision classes in a given decision table, we point out the relationship between approximation degree of dependency and the belief functions. We also introduce the notion of weakly discernable decision tables, and show how to obtain the discernibility threshold of a given weakly discernable decision table. We prove that weakly discernibility is a necessary condition of relative consistency in a given decision table.

[1]  Yiyu Yao,et al.  Probabilistic Rough Sets , 2015, Handbook of Computational Intelligence.

[2]  Yu-Ru Syau,et al.  Discernibility Thresholds and Approximate Dependency in Analysis of Decision Tables , 2015, J. Comput..

[3]  Andrzej Skowron,et al.  Rough mereology: A new paradigm for approximate reasoning , 1996, Int. J. Approx. Reason..

[4]  Ivo Düntsch,et al.  PRE and Variable Precision Models in Rough Set Data Analysis , 2015, Trans. Rough Sets.

[5]  Witold Pedrycz,et al.  Information granularity, big data, and computational intelligence , 2015 .

[6]  Witold Pedrycz,et al.  Granular Computing and Decision-Making: Interactive and Iterative Approaches , 2015 .

[7]  Jie Zhou,et al.  Research of reduct features in the variable precision rough set model , 2009, Neurocomputing.

[8]  S. K. Michael Wong,et al.  Rough Sets: Probabilistic versus Deterministic Approach , 1988, Int. J. Man Mach. Stud..

[9]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[10]  Nick Cercone,et al.  Discovering rules for water demand prediction: An enhanced rough-set approach☆ , 1996 .

[11]  Andrzej Skowron,et al.  Interactive granular computing , 2016 .

[12]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[13]  M. Beynon,et al.  Variable precision rough set theory and data discretisation: an application to corporate failure prediction , 2001 .

[14]  Zdzislaw Pawlak Decision tables - a rough set approach , 1987, Bull. EATCS.

[15]  Xindong Wu,et al.  Automatic determination about precision parameter value based on inclusion degree with variable precision rough set model , 2015, Inf. Sci..

[16]  Malcolm J. Beynon,et al.  Reducts within the variable precision rough sets model: A further investigation , 2001, Eur. J. Oper. Res..

[17]  Wojciech Ziarko,et al.  Variable Precision Rough Set Model , 1993, J. Comput. Syst. Sci..

[18]  Anna Gomolinska,et al.  On Certain Rough Inclusion Functions , 2008, Trans. Rough Sets.

[19]  Shyi-Ming Chen,et al.  Granular Computing and Decision-Making , 2015 .

[20]  Wen-Xiu Zhang,et al.  Theory of including degrees and its applications to uncertainty inferences , 1996, Soft Computing in Intelligent Systems and Information Processing. Proceedings of the 1996 Asian Fuzzy Systems Symposium.

[21]  Jie Zhou,et al.  β-Interval attribute reduction in variable precision rough set model , 2011, Soft Comput..

[22]  Masahiro Inuiguchi Several Approaches to Attribute Reduction in Variable Precision Rough Set Model , 2005, MDAI.

[23]  Andrzej Skowron,et al.  From the Rough Set Theory to the Evidence Theory , 1991 .

[24]  Malcolm J. Beynon,et al.  An illustration of variable precision rough sets model: an analysis of the findings of the UK Monopolies and Mergers Commission , 2005, Comput. Oper. Res..