On the Interpretation of Type Theory in Locally Cartesian Closed Categories
暂无分享,去创建一个
[1] Bart Jacobs. Comprehension Categories and the Semantics of Type Dependency , 1993, Theor. Comput. Sci..
[2] Pierre-Louis Curien. Substitution up to Isomorphism , 1993, Fundam. Informaticae.
[3] Michael Barr,et al. Category theory for computing science , 1995, Prentice Hall International Series in Computer Science.
[4] T. Streicher. Semantics of Type Theory , 1991, Progress in Theoretical Computer Science.
[5] A. J. Power,et al. A general coherence result , 1989 .
[6] Bart Jacobs,et al. Categorical type theory , 1991 .
[7] E. Van Gestel,et al. Programming in Martin-Löf's Type Theory: an Introduction : Bengt Nordström, Kent Petersson and Jan M. Smith Intl. Series of Monographs on Computer Science, Vol. 7, Oxford Science Publications, Oxford, 1990, 231 pages , 1991 .
[8] Jean Benabou,et al. Fibered categories and the foundations of naive category theory , 1985, Journal of Symbolic Logic.
[9] R. Seely,et al. Locally cartesian closed categories and type theory , 1984, Mathematical Proceedings of the Cambridge Philosophical Society.
[10] A. Carboni,et al. Some free constructions in realizability and proof theory , 1995 .
[11] John Cartmell,et al. Generalised algebraic theories and contextual categories , 1986, Ann. Pure Appl. Log..