A grain boundary damage model for delamination

[1]  R. H. Dodds,et al.  Consistent crystal plasticity kinematics and linearization for the implicit finite element method , 2015 .

[2]  Giuseppe Cocchetti,et al.  A domain decomposition approach for the simulation of fracture phenomena in polycrystalline microsystems , 2014 .

[3]  R. H. Dodds,et al.  Mesoscopic modeling of crack arrestor delamination in Al–Li: primary crack shielding and $${T}$$T-stress effect , 2014, International Journal of Fracture.

[4]  Peter Kenesei,et al.  In situ assessment of lattice strain in an Al-Li alloy , 2013 .

[5]  R. Rioja,et al.  The Evolution of Al-Li Base Products for Aerospace and Space Applications , 2012, Metallurgical and Materials Transactions A.

[6]  R. Mishra,et al.  Characterization of high cycle fatigue behavior of a new generation aluminum lithium alloy , 2011 .

[7]  Sylvain Bouillon,et al.  A new modeling framework for sea-ice mechanics based on elasto-brittle rheology , 2011, Annals of Glaciology.

[8]  M. Hernquist Effects of crack arresting delaminations in aluminum-lithium alloys , 2010 .

[9]  J. Schubbe Fatigue crack propagation in 7050-T7451 plate alloy , 2009 .

[10]  B. Schrefler,et al.  Multiscale Methods for Composites: A Review , 2009 .

[11]  Jean-François Molinari,et al.  A statistical investigation of the effects of grain boundary properties on transgranular fracture , 2008 .

[12]  I. Ovid’ko Review on the fracture processes in nanocrystalline materials , 2007 .

[13]  M. Domack,et al.  Microtexture and nanoindentation study of delamination cracking in Al-Cu-Li-X alloys , 2006 .

[14]  Frédéric Barlat,et al.  Linear transfomation-based anisotropic yield functions , 2005 .

[15]  Horacio Dante Espinosa,et al.  A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part II: Numerical examples , 2003 .

[16]  H. Espinosa,et al.  A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part I: Theory and numerical implementation , 2003 .

[17]  D. Dawicke,et al.  Biaxial Testing of 2195 Aluminum Lithium Alloy Using Cruciform Specimens , 2002 .

[18]  D. Tortorelli,et al.  A polycrystal plasticity model based on the mechanical threshold , 2002 .

[19]  H. V. Swygenhoven,et al.  Intergranular fracture in nanocrystalline metals , 2002 .

[20]  Wanlin Guo,et al.  The coupled effects of thickness and delamination on cracking resistance of X70 pipeline steel , 2002 .

[21]  W. Stanton,et al.  Cryogenic Fracture Toughness Improvement for the Super Lightweight Tank's Main Structural Alloy , 2002 .

[22]  C. Mcmahon Hydrogen-induced intergranular fracture of steels , 2001 .

[23]  Somnath Ghosh,et al.  A multi-level computational model for multi-scale damage analysis in composite and porous materials , 2001 .

[24]  Somnath Ghosh,et al.  Interfacial debonding analysis in multiple fiber reinforced composites , 2000 .

[25]  Jacob Fish,et al.  Multiscale analysis of composite materials and structures , 2000 .

[26]  M. R. Hilton,et al.  Characterization of cryogenic mechanical properties of aluminum-lithium alloy C-458 , 1999 .

[27]  Somnath Ghosh,et al.  Multiple scale computational model for damage in composite materials , 1999 .

[28]  L. Kachanov,et al.  Rupture Time Under Creep Conditions , 1999 .

[29]  Mark S. Shephard,et al.  Computational plasticity for composite structures based on mathematical homogenization: Theory and practice , 1997 .

[30]  W. Stanton,et al.  A New Aging Treatment for Improving Cryogenic Toughness of the Main Structural Alloy of the Super Lightweight Tank , 1996 .

[31]  Somnath Ghosh,et al.  Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and Voronoi cell finite element model , 1996 .

[32]  Jacob Fish,et al.  Multigrid method for periodic heterogeneous media Part 1: Convergence studies for one-dimensional case , 1995 .

[33]  J. Fish,et al.  Multi-grid method for periodic heterogeneous media Part 2: Multiscale modeling and quality control in multidimensional case , 1995 .

[34]  P. M Scott,et al.  A review of irradiation assisted stress corrosion cracking , 1994 .

[35]  R. Ritchie,et al.  A comparison of fatigue-crack propagation behavior in sheet and plate aluminum-lithium alloys , 1991 .

[36]  R. O. Ritchie,et al.  Cryogenic toughness of commercial aluminum-lithium alloys: Role of delamination toughening , 1989 .

[37]  Z. Bažant,et al.  Nonlocal Smeared Cracking Model for Concrete Fracture , 1988 .

[38]  R. O. Ritchie,et al.  Fatigue crack propagation in aluminum-lithium alloy 2090: Part II. small crack behavior , 1988 .

[39]  R. Knutsen,et al.  Occurrence of non-metallic inclusions in 3CR12 steel and their effect on impact toughness , 1988 .

[40]  C. L. White,et al.  Surface and grain boundary segregation in relation to intergranular fracture: Boron and sulfur in Ni3Al , 1984 .

[41]  M. F. Ashby,et al.  Intergranular fracture during power-law creep under multiaxial stresses , 1980 .

[42]  Michael F. Ashby,et al.  Intergranular fracture during power-law creep , 1979 .

[43]  R. Raj Intergranular fracture in bicrystals , 1978 .

[44]  C. Mcmahon,et al.  Intergranular fracture in 4340-type steels: Effects of impurities and hydrogen , 1977 .

[45]  Michael F. Ashby,et al.  Intergranular fracture at elevated temperature , 1975 .

[46]  T. Mori,et al.  Note on volume integrals of the elastic field around an ellipsoidal inclusion , 1972 .

[47]  D. M. Tracey,et al.  On the ductile enlargement of voids in triaxial stress fields , 1969 .

[48]  Y. R. Rashid,et al.  Ultimate strength analysis of prestressed concrete pressure vessels , 1968 .

[49]  Katharina Weiss,et al.  Engineering Fracture Mechanics , 2016 .

[50]  R. H. Dodds,et al.  An interface compatibility/equilibrium mechanism for delamination fracture in aluminum–lithium alloys , 2015 .

[51]  M. Domack,et al.  EBSD Study of Delamination Fracture in Al–Li Alloy 2090 , 2010 .

[52]  L. P. Eversa,et al.  Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulation , 2002 .

[53]  Somnath Ghosh,et al.  Multiple scale analysis of heterogeneous elastic structures using homogenization theory and voronoi cell finite element method , 1995 .

[54]  R. O. Ritchie,et al.  Fatigue of Aluminum-Lithium Alloys , 1992 .

[55]  Robert O. Ritchie,et al.  ON THE BEHAVIOR OF SMALL FATIGUE CRACKS IN COMMERCIAL ALUMINUM-LITHIUM ALLOYS , 1988 .

[56]  R. Ritchie,et al.  Fatigue Crack Propagation in 2090 Aluminum-Lithium Alloy: Effect of Compression Overload Cycles , 1987 .

[57]  A. Needleman,et al.  Analysis of the cup-cone fracture in a round tensile bar , 1984 .

[58]  Toshio Mura,et al.  Micromechanics of defects in solids , 1982 .

[59]  J. Devaux,et al.  Numerical study of initiation, stable crack growth, and maximum load, with a ductile fracture criterion based on the growth of holes , 1979 .

[60]  A. Gurson Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media , 1977 .

[61]  P. M. Naghdi,et al.  A general theory of an elastic-plastic continuum , 1965 .

[62]  K. V. Rao,et al.  Fatigue Crack Propagation in Aluminum-Lithium Alloy 2090: Part I. Long Crack Behavior , 2022 .