The Planetary Fourier Spectrometer ( PFS ) for Mars Express

optimised for atmospheric studies, covering the IR range of 1.2-45 μm in two channels. The apodised spectral resolution is 2 cm, while the sampling is 1 cm. The FOV is about 2o for the short wavelength (SW) channel and 4o for the long wavelength (LW) channel, corresponding to spatial resolutions of 10 km and 20 km, respectively, from an altitude of 300 km. PFS will also provide unique data on the surface-atmosphere interaction and the mineralogical composition of the surface. It will be the first Fourier spectrometer covering 1-5 μm to orbit the Earth or Mars. The experiment has real-time onboard Fast Fourier Transform (FFT) in order to select the spectral range of interest for data transmission to ground. Measurement of the 15-μm CO2 band is very important. Its profile gives, via a complex temperature-profile retrieval technique, the vertical pressure temperature relation, which is the basis of the global atmospheric study. The SW channel uses a PbSe detector cooled to 200-220K, while the LW channel is based on a pyroelectric (LiTaO3) device working at room temperature. The interferogram is measured at every 150 nm displacement step of the corner cube retroreflectors (corresponding to 600 nm optical path difference) via a laser

[1]  T. McCord,et al.  Spectrophotometric remote sensing of planets and satellites , 1981 .

[2]  A. Turkevich,et al.  Determination of the chemical composition of Martian soil and rocks: The alpha proton X ray spectrometer , 1997 .

[3]  Oleg Korablev,et al.  Vertical Distribution of Water in the Near-Equatorial Troposphere of Mars: Water Vapor and Clouds , 1997 .

[4]  G. Hansen The infrared absorption spectrum of carbon dioxide ice from 1.8 to 333 μm , 1997 .

[5]  Helmut Hirsch Optical Design and Performance of the Planetary Fourier Spectrometer (PFS) , 1997 .

[6]  J. Pedlosky Geophysical Fluid Dynamics , 1979 .

[7]  Klaus Keil,et al.  Geochemical and mineralogical interpretation of the Viking inorganic chemical results , 1977 .

[8]  P. Withers The Martian Upper Atmosphere , 2003 .

[9]  H. Spinrad,et al.  An analysis of the spectrum of mars , 1964 .

[10]  Richard W. Zurek,et al.  The martian dust cycle. , 1992 .

[11]  L. Soderblom The composition and mineralogy of the Martian surface from spectroscopic observations - 0.3 micron to 50 microns , 1992 .

[12]  John W. Salisbury,et al.  Visible and near infrared spectra of minerals and rocks: IX. Basic and ultrabasic igneous rocks , 1974 .

[13]  V. M. Devi,et al.  THE HITRAN MOLECULAR DATABASE: EDITIONS OF 1991 AND 1992 , 1992 .

[14]  Gabriele Arnold,et al.  Fourier transform spectroscopy in remote sensing of solid planetary surfaces , 1993 .

[15]  Robert M. Haberle,et al.  Sublimation and transport of water from the north residual polar cap on Mars , 1990 .

[16]  W. Smith,et al.  Iterative solution of the radiative transfer equation for the temperature and absorbing gas profile of an atmosphere. , 1970, Applied optics.

[17]  A. Kliore,et al.  The atmosphere of Mars from Mariner 9 radio occultation measurements. , 1972 .

[18]  J. Salisbury,et al.  Mars: Components of infrared spectra and the composition of the dust cloud , 1973 .

[19]  Carol R. Stoker,et al.  Thermal emission spectra of Mars (5.4–10.5 μm): Evidence for sulfates, carbonates, and hydrates , 1989 .

[20]  Alvin Seiff,et al.  Post-Viking models for the structure of the summer atmosphere of Mars , 1978 .

[21]  J. Pollack,et al.  Dynamics of the atmosphere of Mars , 1992 .

[22]  R. Haberle,et al.  The seasonal behavior of water on Mars , 1992 .

[23]  Tobias Owen,et al.  The composition and early history of the atmosphere of Mars , 1992 .

[24]  Terry Z. Martin,et al.  Thermal and albedo mapping of Mars during the Viking primary mission , 1977 .

[25]  J. Pollack,et al.  Properties and effects of dust particles suspended in the Martian atmosphere , 1979 .

[26]  J. Pollack,et al.  Quasi-periodic climate changes on Mars: A review , 1982 .

[27]  P. Masson The Geology of Mars , 1987 .

[28]  R. A. Hanel,et al.  Investigation of the Martian environment by infrared spectroscopy on Mariner 9 , 1972 .

[29]  Barry L. Lutz,et al.  Deuterium on Mars: The Abundance of HDO and the Value of D/H , 1988, Science.

[30]  C. B. Farmer,et al.  The seasonal and global behavior of water vapor in the Mars atmosphere: Complete global results of the Viking Atmospheric Water Detector Experiment , 1982 .

[31]  H. Hirsch,et al.  Studies of Martian atmosphere and surface by the Planetary Rourier Spectrometer on board the Mars-94 mission , 1994, Other Conferences.