Effect of the Polarity of Solvents on Periodic Precipitation: Formation of Hierarchical Revert Liesegang Patterns

Liesegang pattern (LP) is one example of self-organized periodic precipitation patterns in nonequilibrium systems. Several studies have demonstrated that the LP morphology can track physicochemical environmental conditions (e.g., temperature); however, the polarity effect has not been explored to date. In this study, a copper chromate system is used to reveal the impact of solvent polarity on the evolving LP structure using water/organic solvent mixtures. In the typical case of using water/dimethyl sulfoxide (DMSO) mixtures, two drastic changes in LP morphology with increasing DMSO contents were found: (i) increasing frequency of the original structure and (ii) formation of a hierarchical pattern with the appearance of another, lower-frequency structure. Furthermore, the simulation model operating with a bimodal size distribution, allowing both homogeneous and heterogeneous precipitations showed good agreement with the experimental results. Therefore, this study demonstrated that LP can be tailored by solvent polarity and can be used for designing hierarchical precipitation patterns in a straightforward manner.

[1]  Jennifer E. Laaser,et al.  Relationship between Gel Mesh and Particle Size in Determining Nanoparticle Diffusion in Hydrogel Nanocomposites. , 2022, The journal of physical chemistry. B.

[2]  N. Marchettini,et al.  Glycerol Carbonate Structuring in Aqueous Solutions as Inferred from Mutual Diffusion Coefficient, Density and Viscosity Measurements in the Temperature Range 283.15 – 313.15 K , 2022, Journal of Molecular Liquids.

[3]  S. Bocian,et al.  Solvent Influence on Zeta Potential of Stationary Phase—Mobile Phase Interface , 2022, Molecules.

[4]  B. Baytekin,et al.  Chemical Tracking of Temperature by Concurrent Periodic Precipitation Pattern Formation in Polyacrylamide Gels , 2022, ACS applied materials & interfaces.

[5]  H. Nabika,et al.  Modification of the Matalon-Packter Law for Self-Organized Periodic Precipitation Patterns by Incorporating Time-Dependent Diffusion Flux. , 2021, The journal of physical chemistry. B.

[6]  Qing Fang,et al.  Programmable Design of Self-Organized Patterns through a Precipitation Reaction. , 2020, The journal of physical chemistry. B.

[7]  B. Grzybowski,et al.  Shaping microcrystals of metal-organic frameworks by reaction-diffusion. , 2020, Angewandte Chemie.

[8]  B. Baytekin,et al.  Mechanical Control of Periodic Precipitation in Stretchable Gels to Retrieve Information on Elastic Deformation and for the Complex Patterning of Matter , 2020, Advanced materials.

[9]  H. Nabika,et al.  Pattern Formation in Precipitation Reactions: the Liesegang Phenomenon. , 2019, Langmuir : the ACS journal of surfaces and colloids.

[10]  Houssam El-Rassy,et al.  Surface and structural studies in a PbCrO4 Liesegang pattern with revert spacing , 2019, Chemical Physics Letters.

[11]  S. Kulkarni,et al.  Revert Banding in One-Dimensional Periodic Precipitation of the (AgNO3 + KBr) System in Agar Gel , 2019, ACS omega.

[12]  Mohamad Hmadeh,et al.  Liesegang Banding for Controlled Size and Growth of Zeolitic-Imidazolate Frameworks. , 2019, Small.

[13]  B. Ninham,et al.  Specific ion effects in non-aqueous solvents: The case of glycerol carbonate , 2018, Journal of Molecular Liquids.

[14]  Bao-Lian Su,et al.  Hierarchically porous materials: synthesis strategies and structure design. , 2017, Chemical Society reviews.

[15]  R. Toth,et al.  Probing the mystery of Liesegang band formation: revealing the origin of self-organized dual-frequency micro and nanoparticle arrays. , 2016, Soft matter.

[16]  Yang Xu,et al.  Three-dimensional macro-structures of two-dimensional nanomaterials. , 2016, Chemical Society reviews.

[17]  K. Sakurai,et al.  Formation of Ultrathin Liesegang Patterns. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[18]  O. Steinbock,et al.  Self-organization in precipitation reactions far from the equilibrium , 2016, Science Advances.

[19]  W. J. Roth,et al.  Layer Like Porous Materials with Hierarchical Structure , 2016 .

[20]  Irving R. Epstein,et al.  Reaction-diffusion processes at the nano- and microscales. , 2016, Nature nanotechnology.

[21]  Bawadi Abdullah,et al.  The Effect of Co-solvent on the Solubility of a Sparingly Soluble Crystal of Benzoic Acid , 2016 .

[22]  Peter Beike,et al.  Intermolecular And Surface Forces , 2016 .

[23]  Z. Rácz,et al.  Growth of nanoparticles and microparticles by controlled reaction-diffusion processes. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[24]  H. Nabika,et al.  Liesegang patterns engineered by a chemical reaction assisted by complex formation. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[25]  Leen Kalash,et al.  Dynamical profiles of the reactive components in direct and revert Liesegang patterns , 2013 .

[26]  Z. Rácz,et al.  Matalon–Packter law for stretched helicoids formed in precipitation processes , 2013 .

[27]  J. Świergiel,et al.  Relative Static Permittivity of Dimethyl Sulfoxide + Water Mixtures , 2013 .

[28]  T. Darmanin,et al.  Glycerol carbonate as a versatile building block for tomorrow: synthesis, reactivity, properties and applications , 2013 .

[29]  I. Lagzi Controlling and engineering precipitation patterns. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[30]  Tony E. Karam,et al.  Mechanism of revert spacing in a PbCrO4 Liesegang system. , 2011, The journal of physical chemistry. A.

[31]  B. Grzybowski,et al.  Independence of Primary and Secondary Structures in Periodic Precipitation Patterns , 2011 .

[32]  Amani A. Hariri,et al.  Band, target, and onion patterns in Co(OH)2 Liesegang systems. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  I. Epstein,et al.  Precipitation patterns with polygonal boundaries between electrolytes. , 2009, Physical chemistry chemical physics : PCCP.

[34]  R. Sultan,et al.  Ring morphology and pH effects in 2D and 1D Co(OH)2 Liesegang systems. , 2009, The journal of physical chemistry. A.

[35]  M. Droz,et al.  Designed patterns: flexible control of precipitation through electric currents. , 2008, Physical review letters.

[36]  B. Grzybowski,et al.  Nano- and microscopic surface wrinkles of linearly increasing heights prepared by periodic precipitation. , 2005, Journal of the American Chemical Society.

[37]  Bartosz A. Grzybowski,et al.  Micro- and nanotechnology via reaction–diffusion , 2005 .

[38]  I. Lagzi,et al.  Equidistant precipitate pattern formation behind a propagating chemical front , 2003 .

[39]  R. Sultan,et al.  Effect of an electric field on propagating Co(OH)2 Liesegang patterns , 2000 .

[40]  Z. Rácz Formation of Liesegang patterns , 1999, cond-mat/9910028.

[41]  H. Krug,et al.  Morphological characteristics of Liesegang rings and their simulations , 1999 .

[42]  M. Droz,et al.  Liesegang patterns: studies on the width law , 1999, cond-mat/9901079.

[43]  T. Antal,et al.  Derivation of the Matalon-Packter law for Liesegang patterns , 1998, cond-mat/9807251.

[44]  S. Puranik,et al.  Dielectric relaxation studies of aqueous N,N-dimethylformamide using a picosecond time domain technique , 1993 .

[45]  S. Puranik,et al.  Dielectric relaxation of tert-butyl alcohol–water mixtures using a time-domain technique , 1991 .

[46]  U. Dash,et al.  Solute-solvent interactions: dissolution of sparingly soluble silver salts in aqueous-organic solvent systems , 1991 .

[47]  Dee Patterns produced by precipitation at a moving reaction front. , 1986, Physical review letters.

[48]  M. Zahn,et al.  Dielectric properties of water and water/ethylene glycol mixtures for use in pulsed power system design , 1986, Proceedings of the IEEE.

[49]  P. Ramasamy,et al.  A new spacing law for Liesegang rings , 1984, Proceedings / Indian Academy of Sciences.

[50]  P. Ramasamy,et al.  Revert and direct Liesegang phenomenon of silver iodide: Factors influencing the transition point , 1983 .

[51]  G. S. Laddha,et al.  Revert and direct type Liesegang phenomenon of silver iodide , 1981 .

[52]  U. Dash Solute—solvent interactions and dissolution of some sparingly soluble silver salts in various solvent systems , 1981 .

[53]  J. Lyklema Principles of the stability of lyophobic colloidal dispersions in non-aqueous media , 1968 .

[54]  R. Liesegang,et al.  Ueber einige Eigenschaften von Gallerten , 1896 .