Enumeration of spanning trees of graphs with rotational symmetry
暂无分享,去创建一个
[1] D. Welsh. Complexity: Knots, Colourings and Counting: Link polynomials and the Tait conjectures , 1993 .
[2] G. Kirchhoff. Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird , 1847 .
[3] Fuji Zhang,et al. The number of spanning trees of plane graphs with reflective symmetry , 2005, J. Comb. Theory, Ser. A.
[4] F. Y. Wu. The Potts model , 1982 .
[5] On the Entropy of Spanning Trees on a Large Triangular Lattice , 2003, cond-mat/0309198.
[6] H. Stanley,et al. Phase Transitions and Critical Phenomena , 2008 .
[7] F. Y. Wu,et al. Spanning trees on graphs and lattices in d dimensions , 2000, cond-mat/0004341.
[8] G. R. Allen. Dimer models for the antiferroelectric transition in copper formate tetrahydrate , 1974 .
[9] Fuji Zhang,et al. Enumeration of perfect matchings of graphs with reflective symmetry by Pfaffians , 2004, Adv. Appl. Math..
[10] Geoffrey Grimmett. The Random-Cluster Model , 2002, math/0205237.
[11] S. Salinas,et al. Theory of the phase transition in the layered hydrogen-bonded SnCl2· 2H2O crystal , 1974 .
[12] F. Y. Wu,et al. Spanning trees on hypercubic lattices and nonorientable surfaces , 2000, Appl. Math. Lett..
[13] Shu-Chiuan Chang,et al. A pr 2 00 6 Spanning Trees on Lattices and Integration Identities , 2006 .
[14] J. A. Bondy,et al. Graph Theory with Applications , 1978 .
[15] F. Y. Wu. Number of spanning trees on a lattice , 1977 .
[16] C. Fortuin,et al. On the random-cluster model: I. Introduction and relation to other models , 1972 .
[17] D. Cvetkovic,et al. Spectra of graphs : theory and application , 1995 .
[18] Russell Lyons. Asymptotic Enumeration of Spanning Trees , 2005, Comb. Probab. Comput..
[19] E. Dirksen. Über die Auflösung der numerischen Gleichungen mit Einer Unbekannten. , 1835 .
[20] R. Pemantle,et al. PR ] 2 A pr 2 00 4 LOCAL CHARACTERISTICS , ENTROPY AND LIMIT THEOREMS FOR SPANNING TREES AND DOMINO TILINGS VIA TRANSFER-IMPEDANCES Running Head : LOCAL BEHAVIOR OF SPANNING TREES , 1993 .
[21] S. M. Bhattacharjee,et al. Dimer models on anisotropic lattices , 1989 .
[22] David Bruce Wilson,et al. Trees and Matchings , 2000, Electron. J. Comb..
[23] Greg Kuperberg. An Exploration of the Permanent-Determinant Method , 1998, Electron. J. Comb..
[24] Fuji Zhang,et al. Enumerating spanning trees of graphs with an involution , 2009, J. Comb. Theory, Ser. A.
[25] M. Fisher. On the Dimer Solution of Planar Ising Models , 1966 .
[26] Wei-Shih Yang,et al. Spanning Trees on the Sierpinski Gasket , 2006, cond-mat/0609453.
[27] R. Shrock,et al. Some exact results for spanning trees on lattices , 2006, cond-mat/0602574.
[28] R. Pemantle,et al. Local Characteristics, Entropy and Limit Theorems for Spanning Trees and Domino Tilings Via Transfer-Impedances , 1993, math/0404048.
[29] Jin Ho Kwak,et al. Characteristic polynomials of graph coverings , 2004 .
[30] Dimers on two-dimensional lattices , 2003, cond-mat/0303251.
[31] William Jockusch. Perfect Matchings and Perfect Squares , 1994, J. Comb. Theory, Ser. A.
[32] Norman Biggs. Algebraic Graph Theory: Index , 1974 .