Performing stable 2D adaptive visual positioning/tracking control without explicit depth measurement

In this work, a new 2D adaptive visual positioning/tracking controller is considered. The proposed scheme is developed for image-based eye-to-hand systems to perform position and tracking tasks on the 3D environment, when both camera calibration and robot parameters are uncertain. The symmetric-diagonal-upper (SDU) factorization method is adopted to solve the adaptive multivariable control problem. The positioning/tracking controller is first developed for the Cartesian robot case, and then extended to the general robotic system. Simulation results are also presented for the proposed strategy.

[1]  Éric Marchand,et al.  Eye-in-hand/eye-to-hand cooperation for visual servoing , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[2]  L. Hsu,et al.  Adaptive visual tracking for motions on smooth surfaces , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[3]  Rafael Kelly,et al.  Stable visual servoing of camera-in-hand robotic systems , 2000 .

[4]  F. Conticelli,et al.  Discrete-time robot visual feedback in 3D positioning tasks with depth adaptation , 2001 .

[5]  Warren E. Dixon,et al.  Adaptive 2.5D visual servoing of kinematically redundant robot manipulators , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[6]  S. Hutchinson,et al.  A new hybrid image-based visual servo control scheme , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[7]  François Chaumette,et al.  2½D visual servoing , 1999, IEEE Trans. Robotics Autom..

[8]  Peter I. Corke,et al.  A tutorial on visual servo control , 1996, IEEE Trans. Robotics Autom..

[9]  Antti J. Koivo,et al.  Real-time vision feedback for servoing robotic manipulator with self-tuning controller , 1991, IEEE Trans. Syst. Man Cybern..

[10]  Liu Hsu,et al.  MIMO direct adaptive control with reduced prior knowledge of the high frequency gain , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[11]  Benedetto Allotta,et al.  Nonlinear controllability and stability analysis of adaptive image-based systems , 2001, IEEE Trans. Robotics Autom..

[12]  Alessandro Astolfi,et al.  Two solutions to the adaptive visual servoing problem , 2001, IEEE Trans. Robotics Autom..

[13]  Patrick Rives,et al.  A new approach to visual servoing in robotics , 1992, IEEE Trans. Robotics Autom..

[14]  Satoru Takahashi,et al.  Identification of Riccati dynamics under perspective and orthographic observations , 2000, IEEE Trans. Autom. Control..

[15]  Lee E. Weiss,et al.  Dynamic sensor-based control of robots with visual feedback , 1987, IEEE Journal on Robotics and Automation.

[16]  B. Ghosh,et al.  A Perspective Theory for Motion and Shape Estimation in Machine Vision , 1995 .

[17]  P. Perona,et al.  Motion estimation via dynamic vision , 1996, IEEE Trans. Autom. Control..

[18]  Liu Hsu,et al.  Lyapunov-based adaptive control of MIMO systems , 2003, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[19]  Liu Hsu,et al.  Adaptive visual tracking with uncertain manipulator dynamics and uncalibrated camera , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).