Quantum computing with realistically noisy devices

In theory, quantum computers offer a means of solving problems that would be intractable on conventional computers. Assuming that a quantum computer could be constructed, it would in practice be required to function with noisy devices called ‘gates’. These gates cause decoherence of the fragile quantum states that are central to the computer's operation. The goal of so-called ‘fault-tolerant quantum computing’ is therefore to compute accurately even when the error probability per gate (EPG) is high. Here we report a simple architecture for fault-tolerant quantum computing, providing evidence that accurate quantum computing is possible for EPGs as high as three per cent. Such EPGs have been experimentally demonstrated, but to avoid excessive resource overheads required by the necessary architecture, lower EPGs are needed. Assuming the availability of quantum resources comparable to the digital resources available in today's computers, we show that non-trivial quantum computations at EPGs of as high as one per cent could be implemented.

[1]  Andrew M. Steane Quantum computer architecture for fast entropy extraction , 2002, Quantum Inf. Comput..

[2]  А Е Китаев,et al.  Квантовые вычисления: алгоритмы и исправление ошибок@@@Quantum computations: algorithms and error correction , 1997 .

[3]  D. Bruß,et al.  Optimal universal and state-dependent quantum cloning , 1997, quant-ph/9705038.

[4]  E. Knill Quantum Computing with Very Noisy Devices , 1998 .

[5]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[6]  D. Wineland,et al.  A 303-MHz frequency standard based on trapped Be/sup +/ ions , 1991, IEEE Transactions on Instrumentation and Measurement.

[7]  Dirk Schlingemann Stabilizer codes can be realized as graph codes , 2002, Quantum Inf. Comput..

[8]  Ben W. Reichardt Improved ancilla preparation scheme increases fault-tolerant threshold , 2004 .

[9]  David P. DiVincenzo,et al.  Local fault-tolerant quantum computation , 2005 .

[10]  W Dür,et al.  Multiparticle entanglement purification for graph states. , 2003, Physical review letters.

[11]  E. Knill,et al.  Resilient quantum computation: error models and thresholds , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[12]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[13]  A. Harrow,et al.  Robustness of quantum gates in the presence of noise , 2003, quant-ph/0301108.

[14]  E. Knill Scalable quantum computing in the presence of large detected-error rates , 2003, quant-ph/0312190.

[15]  Debbie W. Leung,et al.  Realization of quantum process tomography in NMR , 2000, quant-ph/0012032.

[16]  D. Leibfried,et al.  Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate , 2003, Nature.

[17]  F. Schmidt-Kaler,et al.  Bell states of atoms with ultralong lifetimes and their tomographic state analysis. , 2004, Physical review letters.

[18]  E. Knill Fault-Tolerant Postselected Quantum Computation: Threshold Analysis , 2004 .

[19]  J. Preskill Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[20]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[21]  D. Leung,et al.  Methodology for quantum logic gate construction , 2000, quant-ph/0002039.

[22]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[23]  Dorit Aharonov,et al.  Fault-tolerant quantum computation with constant error , 1997, STOC '97.

[24]  D. Wineland,et al.  A 303-MHz frequency standard based on trapped Be/sup +/ ions , 1990 .

[25]  Schumacher,et al.  Sending entanglement through noisy quantum channels. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[26]  E. Knill,et al.  Resilient Quantum Computation , 1998 .

[27]  Christof Zalka Threshold Estimate for Fault Tolerant Quantum Computation , 1996 .

[28]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[29]  A. Steane Space, Time, Parallelism and Noise Requirements for Reliable Quantum Computing , 1997, quant-ph/9708021.

[30]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[31]  Peter W. Shor,et al.  Fault-tolerant quantum computation , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[32]  R. Feynman Simulating physics with computers , 1999 .

[33]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[34]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[35]  Colin P. Williams,et al.  Fast Quantum Algorithms for Numerical Integrals and Stochastic Processes , 1999 .

[36]  Sergei Bravyi,et al.  Universal Quantum Computation Based on a Magic States Distillation , 2004 .

[37]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[38]  Dima L. Shepelyansky,et al.  Quantum error correction of coherent errors by randomization , 2004 .

[39]  E. Knill Fault-Tolerant Postselected Quantum Computation: Schemes , 2004, quant-ph/0402171.

[40]  Andreas Klappenecker,et al.  Graphs, quadratic forms, and quantum codes , 2002, Proceedings IEEE International Symposium on Information Theory,.

[41]  P. Shor,et al.  QUANTUM-CHANNEL CAPACITY OF VERY NOISY CHANNELS , 1997, quant-ph/9706061.

[42]  A. Steane Overhead and noise threshold of fault-tolerant quantum error correction , 2002, quant-ph/0207119.

[43]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[44]  Ashish V. Thapliyal,et al.  Entanglement-Assisted Classical Capacity of Noisy Quantum Channels , 1999, Physical Review Letters.

[45]  Andrew M. Steane Efficient fault-tolerant quantum computing , 1999, Nature.

[46]  R. Martinez,et al.  An algorithmic benchmark for quantum information processing , 2000, Nature.