Switchable third ScFeO3 polar ferromagnet with YMnO3-type structure

Polar magnets are important materials in fundamental science and technology. However, the requirements for a polar nature are generally incompatible with those for magnetism, and thus there are few polar magnets. At the order and disorder boundaries of cations in ABO3 compounds, two polar ferromagnets of ScFeO3 with polar-corundum-type and LiNbO3-type structures were previously prepared by high-pressure synthesis. Here, we prepared a third ScFeO3 polar ferromagnet with an YMnO3-type structure using a heteroepitaxial film technique and characterized its physical properties. The YMnO3-type ScFeO3 film on a perovskite electrode showed a ferroelectric P–E hysteresis loop with Pr ∼ 4.9 μC cm−2. Only YMO-type ScFeO3 has switchable polarization by the external electric field among the three ScFeO3 polar magnets. Magnetic measurements confirmed weak ferromagnetism (TN = 195 K), which is the highest observed in the hexagonal family.

[1]  Xifan Wu,et al.  Tuning the Néel Temperature of Hexagonal Ferrites by Structural Distortion. , 2018, Physical review letters.

[2]  H. M. Jang,et al.  Switchable ferroelectric photovoltaic effects in epitaxial h-RFeO3 thin films. , 2018, Nanoscale.

[3]  Juan Liu,et al.  A Novel Room‐Temperature Multiferroic System of Hexagonal Lu1−xInxFeO3 , 2018 .

[4]  Lena F. Kourkoutis,et al.  Atomically engineered ferroic layers yield a room-temperature magnetoelectric multiferroic , 2016, Nature.

[5]  S. Yasui,et al.  Crystal Isomers of ScFeO3 , 2016 .

[6]  Je-Guen Park,et al.  Hexagonal RMnO3: A Model System for 2D Triangular Lattice Antiferromagnets , 2016 .

[7]  Je-Guen Park,et al.  Hexagonal RMnO3: a model system for two-dimensional triangular lattice antiferromagnets. , 2015, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[8]  H. Inoue,et al.  Expansion of the hexagonal phase-forming region of Lu1-xScxFeO3 by containerless processing. , 2015, Inorganic chemistry.

[9]  S. Cheong,et al.  Multiferroicity in doped hexagonal LuFe O 3 , 2015 .

[10]  P. Gao,et al.  Room-temperature polar ferromagnet ScFeO3 transformed from a high-pressure orthorhombic perovskite phase. , 2014, Journal of the American Chemical Society.

[11]  Wenbin Wang,et al.  Multiferroic hexagonal ferrites (h-RFeO$_3$, R=Y, Dy-Lu): an experimental review , 2014, 1407.1798.

[12]  B. Gu,et al.  Anomalous properties of hexagonal rare-earth ferrites from first principles , 2014 .

[13]  V. Roddatis,et al.  Complex structural-ferroelectric domain walls in thin films of hexagonal orthoferrites RFeO3 (R = Lu, Er) , 2013 .

[14]  S. Cheong,et al.  Delicate balance between ferroelectricity and antiferroelectricity in hexagonal InMnO3 , 2013 .

[15]  H. M. Jang,et al.  Artificially imposed hexagonal ferroelectricity in canted antiferromagnetic YFeO3 epitaxial thin films , 2013 .

[16]  C. Fennie,et al.  Bulk magnetoelectricity in the hexagonal manganites and ferrites , 2013, Nature Communications.

[17]  Lixin He,et al.  Crystal field splitting and optical bandgap of hexagonal LuFeO3 films , 2012, 1210.0076.

[18]  M. Chi,et al.  Room-temperature multiferroic hexagonal LuFeO3 films. , 2012, Physical review letters.

[19]  H. M. Jang,et al.  Epitaxially Constrained Hexagonal Ferroelectricity and Canted Triangular Spin Order in LuFeO3 Thin Films , 2012 .

[20]  F. Morrison,et al.  Structural, magnetic and electrical properties of the hexagonal ferrites MFeO3 (M=Y, Yb, In) , 2012 .

[21]  V. Mazurenko,et al.  Magnetic structure of hexagonal YMnO3 and LuMnO3 from a microscopic point of view , 2012, 1205.4478.

[22]  R. Palgrave,et al.  A Polar Corundum Oxide Displaying Weak Ferromagnetism at Room Temperature , 2012, Journal of the American Chemical Society.

[23]  N. Perov,et al.  Weak ferromagnetism in hexagonal orthoferrites RFeO3 (R = Lu, Er-Tb) , 2011 .

[24]  M. Fiebig,et al.  Observation of persistent centrosymmetricity in the hexagonal manganite family , 2011, 1109.1448.

[25]  H. Inoue,et al.  Noncentrosymmetric Structure of LuFeO3 in Metastable State , 2010 .

[26]  M. Karppinen,et al.  Characterization of RMnO3 (R = Sc, Y, Dy-Lu): High-pressure synthesized metastable perovskites and their hexagonal precursor phases , 2008 .

[27]  Roman Caudillo,et al.  Hexagonal versus perovskite phase of manganite R Mn O 3 ( R = Y , Ho , Er , Tm , Yb , Lu ) , 2006 .

[28]  Tomohiro Nakamura,et al.  Glycothermal Reaction of Rare-Earth Acetate and Iron Acetylacetonate: Formation of Hexagonal ReFeO3 , 2005 .

[29]  H. Zandbergen,et al.  XRD and HREM Studies of Epitaxially Stabilized Hexagonal Orthoferrites RFeO3 (R = Eu−Lu) , 2004 .

[30]  Nicola A. Spaldin,et al.  The origin of ferroelectricity in magnetoelectric YMnO3 , 2004, Nature materials.

[31]  C. Wu,et al.  Variation of Triangular Antiferromagnetic Order in Ferroelectromagnetic Sc1-xLuxMnO3 Manganites , 2003 .

[32]  R. Ramesh,et al.  Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures , 2003, Science.

[33]  H. Takagi,et al.  Dielectric and magnetic anomalies and spin frustration in hexagonal R MnO 3 ( R = Y , Yb, and Lu) , 2001 .

[34]  X. Gonze,et al.  Dynamical atomic charges: The case of ABO(3) compounds , 1998, cond-mat/9805013.

[35]  R. Roth,et al.  Solid State Reactions Involving Oxides of Trivalent Cations , 1961, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[36]  A. Hippel Ferroelectricity, Domain Structure, and Phase Transitions of Barium Titanate , 1950 .

[37]  S. Hosokawa,et al.  Synthesis of metastable rare-earth–iron mixed oxide with the hexagonal crystal structure , 2013 .

[38]  R. Ramesh,et al.  Multiferroics: progress and prospects in thin films. , 2007, Nature materials.

[39]  E. Sawaguchi,et al.  Ferroelectric Behavior in Hexagonal Type Barium Titanate , 1985 .

[40]  J. Moreau,et al.  Ferroelectric BiFeO3 X-ray and neutron diffraction study , 1971 .