A minimum description length approach to hidden Markov models with Poisson and Gaussian emissions. Application to order identification

[1]  L. Baum,et al.  Statistical Inference for Probabilistic Functions of Finite State Markov Chains , 1966 .

[2]  L. Baum,et al.  A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains , 1970 .

[3]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[4]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[5]  Michael B. Pursley,et al.  Efficient universal noiseless source codes , 1981, IEEE Trans. Inf. Theory.

[6]  L. R. Rabiner,et al.  An introduction to the application of the theory of probabilistic functions of a Markov process to automatic speech recognition , 1983, The Bell System Technical Journal.

[7]  J. Henna On estimating of the number of constituents of a finite mixture of continuous distributions , 1985 .

[8]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[9]  Robert Azencott,et al.  Series of Irregular Observations , 1986 .

[10]  J. Rissanen Stochastic Complexity and Modeling , 1986 .

[11]  Andrew R. Barron,et al.  Information-theoretic asymptotics of Bayes methods , 1990, IEEE Trans. Inf. Theory.

[12]  James O. Berger,et al.  Ockham's Razor and Bayesian Analysis , 1992 .

[13]  B. Leroux Consistent estimation of a mixing distribution , 1992 .

[14]  B. Leroux Maximum-likelihood estimation for hidden Markov models , 1992 .

[15]  L. Finesso Consistent estimation of the order for Markov and hidden Markov chains , 1992 .

[16]  John C. Kieffer,et al.  Strongly consistent code-based identification and order estimation for constrained finite-state model classes , 1993, IEEE Trans. Inf. Theory.

[17]  James P. Hughes,et al.  A class of stochastic models for relating synoptic atmospheric patterns to regional hydrologic phenomena , 1994 .

[18]  Prakash Narayan,et al.  Order estimation and sequential universal data compression of a hidden Markov source by the method of mixtures , 1994, IEEE Trans. Inf. Theory.

[19]  Ghassan Kawas Kaleh,et al.  Joint parameter estimation and symbol detection for linear or nonlinear unknown channels , 1994, IEEE Trans. Commun..

[20]  John D. Kalbfleisch,et al.  Penalized minimum‐distance estimates in finite mixture models , 1996 .

[21]  E. Gassiat,et al.  The estimation of the order of a mixture model , 1997 .

[22]  Jorma Rissanen,et al.  The Minimum Description Length Principle in Coding and Modeling , 1998, IEEE Trans. Inf. Theory.

[23]  E. Gassiat,et al.  The likelihood ratio test for the number of components in a mixture with Markov regime , 2000 .

[24]  I. Csiszár,et al.  The consistency of the BIC Markov order estimator , 2000 .

[25]  Lancelot F. James,et al.  Bayesian Model Selection in Finite Mixtures by Marginal Density Decompositions , 2001 .

[26]  Bin Yu,et al.  Model Selection and the Principle of Minimum Description Length , 2001 .

[27]  Lancelot F. James,et al.  Consistent estimation of mixture complexity , 2001 .

[28]  Rachel J. Mackay,et al.  Estimating the order of a hidden markov model , 2002 .

[29]  Neri Merhav,et al.  Hidden Markov processes , 2002, IEEE Trans. Inf. Theory.

[30]  E. Gassiat Likelihood ratio inequalities with applications to various mixtures , 2002 .

[31]  Stéphane Boucheron,et al.  Optimal error exponents in hidden Markov models order estimation , 2003, IEEE Trans. Inf. Theory.

[32]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[33]  B. Liseo,et al.  A default Bayesian test for the number of components in a mixture , 2003 .

[34]  Eric Moulines,et al.  Inference in hidden Markov models , 2010, Springer series in statistics.

[35]  Judith Rousseau,et al.  Nonasymptotic Bounds for Bayesian Order Identification with Application to Mixtures , 2005 .

[36]  Imre Csiszár,et al.  Context tree estimation for not necessarily finite memory processes, via BIC and MDL , 2005, IEEE Transactions on Information Theory.

[37]  Haikady N. Nagaraja,et al.  Inference in Hidden Markov Models , 2006, Technometrics.

[38]  Aurélien Garivier Consistency of the Unlimited BIC Context Tree Estimator , 2006, IEEE Transactions on Information Theory.

[39]  E. Gassiat,et al.  Asymptotic distribution and local power of the log-likelihood ratio test for mixtures: bounded and unbounded cases , 2006 .

[40]  Antoine Chambaz,et al.  Testing the order of a model , 2006 .

[41]  Valeria De Fonzo,et al.  Hidden Markov Models in Bioinformatics , 2007 .

[42]  Jean-Marc Bardet,et al.  Identification of the multiscale fractional Brownian motion with biomechanical applications , 2007, math/0701873.

[43]  P. Deb Finite Mixture Models , 2008 .

[44]  P. Sabatier,et al.  Asymptotic distribution and power of the likelihood ratio test for mixtures: bounded and unbounded cases , 2022 .