Adaptive optics wide-field microscopy using direct wavefront sensing.

We report a technique for measuring and correcting the wavefront aberrations introduced by a biological sample using a Shack-Hartmann wavefront sensor, a fluorescent reference source, and a deformable mirror. The reference source and sample fluorescence are at different wavelengths to separate wavefront measurement and sample imaging. The measurement and correction at one wavelength improves the resolving power at a different wavelength, enabling the structure of the sample to be resolved.

[1]  A. Einstein Concerning an heuristic point of view toward the emission and transformation of light , 1905 .

[2]  Horace W. Babcock,et al.  THE POSSIBILITY OF COMPENSATING ASTRONOMICAL SEEING , 1953 .

[3]  F. Zernike How I discovered phase contrast. , 1955, Science.

[4]  M. Davidson,et al.  Optical Microscopy , 1999 .

[5]  D. Fried,et al.  Image-position error associated with a quadrant detector , 1982 .

[6]  Terry S. Mast,et al.  The Design of the Keck Observatory and Telescope , 1985 .

[7]  S. Gibson,et al.  Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[8]  Takahiro Wada,et al.  IT-CCD IMAGE SENSOR , 1992 .

[9]  Junzhong Liang,et al.  Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor. , 1994, Journal of the Optical Society of America. A, Optics, image science, and vision.

[10]  Adam Kapralski The IMAGE TRANSFORMS , 1994 .

[11]  B. Welsh,et al.  Imaging Through Turbulence , 1996 .

[12]  Andrew K. Dunn,et al.  Three-dimensional computation of light scattering from cells , 1996 .

[13]  D R Williams,et al.  Supernormal vision and high-resolution retinal imaging through adaptive optics. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[14]  J. Hardy,et al.  Adaptive Optics for Astronomical Telescopes , 1998 .

[15]  J C Dainty,et al.  Single-pass measurements of the wave-front aberrations of the human eye by use of retinal lipofuscin autofluorescence. , 1999, Optics letters.

[16]  R. Shack,et al.  History and principles of Shack-Hartmann wavefront sensing. , 2001, Journal of refractive surgery.

[17]  A. Diaspro Confocal and two-photon microscopy : foundations, applications, and advances , 2001 .

[18]  I Iglesias,et al.  Closed-loop adaptive optics in the human eye. , 2001, Optics letters.

[19]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[20]  Edward Roy Pike,et al.  Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances , 2002 .

[21]  J. Girkin,et al.  Practical implementation of adaptive optics in multiphoton microscopy. , 2003, Optics express.

[22]  Brian Jeffrey Bauman Optical design for extremely large telescope adaptive optics systems , 2003 .

[23]  Donald T. Gavel Suppressing anomalous localized waffle behavior in least-squares wavefront reconstructors , 2003, SPIE Astronomical Telescopes + Instrumentation.

[24]  Lisa A Poyneer,et al.  Scene-based Shack-Hartmann wave-front sensing: analysis and simulation. , 2003, Applied optics.

[25]  Fabrice Labeau,et al.  Discrete Time Signal Processing , 2004 .

[26]  David Le Mignant,et al.  Performance of the Keck Observatory adaptive-optics system. , 2004, Applied optics.

[27]  Winfried Denk,et al.  Coherence-gated wave-front sensing in strongly scattering samples. , 2004, Optics letters.

[28]  B. Macintosh,et al.  Spatially filtered wave-front sensor for high-order adaptive optics. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[29]  Donald T. Gavel,et al.  High-speed horizontal-path atmospheric turbulence correction using a large actuator-number MEMS spatial light modulator in an interferometric phase conjugation engine , 2004 .

[30]  C. Dong,et al.  Spherical aberration correction in multiphoton fluorescence imaging using objective correction collar. , 2005, Journal of biomedical optics.

[31]  Ian Parker,et al.  Optical single-channel recording by imaging Ca2+ flux through individual ion channels: theoretical considerations and limits to resolution. , 2005, Cell calcium.

[32]  W. Denk,et al.  Deep tissue two-photon microscopy , 2005, Nature Methods.

[33]  W. Denk,et al.  Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing , 2006, Proceedings of the National Academy of Sciences.

[34]  K. Svoboda,et al.  Principles of Two-Photon Excitation Microscopy and Its Applications to Neuroscience , 2006, Neuron.

[35]  Lisa Poyneer,et al.  Demonstrating sub-nm closed loop MEMS flattening. , 2006, Optics express.

[36]  S. Inoué,et al.  Foundations of Confocal Scanned Imaging in Light Microscopy , 2006 .

[37]  B. Masters Confocal Microscopy And Multiphoton Excitation Microscopy: The Genesis of Live Cell Imaging , 2006 .

[38]  A. Roorda,et al.  MEMS-based adaptive optics scanning laser ophthalmoscopy. , 2006, Optics letters.

[39]  H. E. Keller,et al.  Objective Lenses for Confocal Microscopy , 2006 .

[40]  Jerry Nelson,et al.  The design and optimization of detectors for adaptive optics wavefront sensing , 2006, SPIE Astronomical Telescopes + Instrumentation.

[41]  Gerard Rousset,et al.  Comparison of centroid computation algorithms in a Shack–Hartmann sensor , 2006 .

[42]  I. Johnson,et al.  Practical Considerations in the Selection and Application of Fluorescent Probes , 2006 .

[43]  Yarong Wang,et al.  Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. , 2007, Cancer research.

[44]  M. Booth Adaptive optics in microscopy. , 2003, Philosophical transactions. Series A, Mathematical, physical, and engineering sciences.

[45]  C. Campbell,et al.  Adaptive Optics in Vision Science , 2007 .

[46]  T Wilson,et al.  Specimen‐induced distortions in light microscopy , 2007, Journal of microscopy.

[47]  Lisa Ann Poyneer Signal processing for high-precision wavefront control in adaptive optics , 2007 .

[48]  Scot S. Olivier,et al.  Implementation of a Shack-Hartmann wavefront sensor for the measurement of embryo-induced aberrations using fluorescent microscopy , 2009, MOEMS-MEMS.

[49]  Thomas G. Bifano,et al.  MEMS deformable mirrors for astronomical adaptive optics , 2010, Astronomical Telescopes + Instrumentation.

[50]  Daren Dillon,et al.  Wavefront aberration measurements and corrections through thick tissue using fluorescent microsphere reference beacons , 2010, Optics express.

[51]  Donald Gavel,et al.  Implementation of adaptive optics in fluorescent microscopy using wavefront sensing and correction , 2010, MOEMS-MEMS.

[52]  Elena Cattaneo,et al.  Neural stem cell systems: physiological players or in vitro entities? , 2010, Nature Reviews Neuroscience.

[53]  Leander Dietzsch,et al.  The inverted microscope , 2010 .

[54]  Joel Kubby,et al.  Characterization and annealing of high-stroke monolithic gold MEMS deformable mirror for adaptive optics , 2011, MOEMS-MEMS.

[55]  Xiaodong Tao,et al.  Adaptive optics confocal microscopy using direct wavefront sensing. , 2011, Optics letters.

[56]  Christopher D. Saunter,et al.  Adaptive optics for wide-field microscopy , 2011, BiOS.

[57]  Xiaodong Tao,et al.  Adaptive optics microscopy with direct wavefront sensing using fluorescent protein guide stars. , 2011, Optics letters.