Circuit clustering using a stochastic flow injection method

We present a new clustering metric, based on a random graph model and a ratio cut concept. The minimization of the proposed clustering cost can be transformed to a uniform multicommodity flow problem by adding artificial weight functions, which can be solved by a multicommodity flow-based algorithm with high complexity. We devise a probabilistic flow injection approach which drastically reduces the complexity of the flow-based algorithm. Experimental results show that this algorithm generates promising results with respect to the proposed metric. >

[1]  D. R. Fulkerson,et al.  Flows in Networks. , 1964 .

[2]  C. Yeh,et al.  A probabilistic multicommodity-flow solution to circuit clustering problems , 1992, 1992 IEEE/ACM International Conference on Computer-Aided Design.

[3]  Martine D. F. Schlag,et al.  Spectral K-way ratio-cut partitioning and clustering , 1994, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[4]  Farhad Shahrokhi,et al.  The maximum concurrent flow problem , 1990, JACM.

[5]  R. M. Mattheyses,et al.  A Linear-Time Heuristic for Improving Network Partitions , 1982, 19th Design Automation Conference.

[6]  Fillia Makedon,et al.  Fast approximation algorithms for multicommodity flow problems , 1991, STOC '91.

[7]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[8]  Andrew B. Kahng,et al.  Geometric Embeddings for Faster and Better Multi-Way Netlist Partitioning , 1993, 30th ACM/IEEE Design Automation Conference.

[9]  Sungho Kang,et al.  Linear Ordering and Application to Placement , 1983, 20th Design Automation Conference Proceedings.

[10]  K. Onaga,et al.  On feasibility conditions of multicommodity flows in networks , 1971 .

[11]  Ernst G. Ulrich,et al.  Clustering and linear placement , 1972, DAC '72.

[12]  Laura A. Sanchis,et al.  Multiple-Way Network Partitioning , 1989, IEEE Trans. Computers.

[13]  Satish Rao,et al.  Finding near-optimal cuts: an empirical evaluation , 1993, SODA '93.

[14]  E. G. Ulrich,et al.  Clustering and linear placement , 1988, 25 years of DAC.

[15]  Chingwei Yeh,et al.  A general purpose multiple way partitioning algorithm , 1991, DAC '91.

[16]  Roy L. Russo,et al.  A Heuristic Procedure for the Partitioning and Mapping of Computer Logic Graphs , 1971, IEEE Transactions on Computers.

[17]  Balakrishnan Krishnamurthy,et al.  An Improved Min-Cut Algonthm for Partitioning VLSI Networks , 1984, IEEE Transactions on Computers.

[18]  Roy L. Russo,et al.  On a Pin Versus Block Relationship For Partitions of Logic Graphs , 1971, IEEE Transactions on Computers.

[19]  Brian W. Kernighan,et al.  An efficient heuristic procedure for partitioning graphs , 1970, Bell Syst. Tech. J..

[20]  Chung-Kuan Cheng,et al.  The optimal partitioning of networks , 1992, Networks.

[21]  Kenneth M. Hall An r-Dimensional Quadratic Placement Algorithm , 1970 .

[22]  Hans Jürgen Prömel,et al.  Finding clusters in VLSI circuits , 1990, 1990 IEEE International Conference on Computer-Aided Design. Digest of Technical Papers.

[23]  Howard R. Charney,et al.  Efficient partitioning of components , 1968, DAC.

[24]  A. J. Stone,et al.  Logic partitioning , 1966, DAC.