Characterizations of three kinds of hemirings by fuzzy soft h-ideals

The concept of ∈γ, ∈γ $\vee$qδ-fuzzy soft h-interior-ideals of hemirings is introduced and some related properties are obtained. In particular, the characterization of prime ∈γ, ∈γ $\vee$qδ-fuzzy soft h-interior-ideals of hemirings is provided. Finally, we show that three kinds of h-intra-hemiregular, h-quasi-hemiregular and h-semisimple hemirings can be described by ∈γ, ∈γ $\vee$qδ-fuzzy soft h-ideals, ∈γ, ∈γ $\vee$qδ-fuzzy soft h-bi-ideals, ∈γ, ∈γ $\vee$qδ-fuzzy soft h-quasi-ideals and ∈γ, ∈γ $\vee$qδ-fuzzy soft h-interior-ideals. We also pointed out that Definition 4.19 in [29] is not true.

[1]  Feng Feng,et al.  Generalized uni-int decision making schemes based on choice value soft sets , 2012, Eur. J. Oper. Res..

[2]  Y. Jun,et al.  Soft R 0 -Algebras Based on Fuzzy Sets. , 2012, Soft Computing Models in Industrial and Environmental Applications.

[3]  Jianming Zhan,et al.  Vague soft hemirings , 2011, Comput. Math. Appl..

[4]  Jianming Zhan,et al.  The characterizations of hemirings in terms of fuzzy soft h-ideals , 2011, Neural Computing and Applications.

[5]  Muhammad Irfan Ali,et al.  Algebraic structures of soft sets associated with new operations , 2011, Comput. Math. Appl..

[6]  Young Bae Jun,et al.  Soft sets and soft rough sets , 2011, Inf. Sci..

[7]  Naim Çagman,et al.  Soft set theory and uni-int decision making , 2010, Eur. J. Oper. Res..

[8]  Bijan Davvaz,et al.  Soft sets combined with fuzzy sets and rough sets: a tentative approach , 2010, Soft Comput..

[9]  Bekir Tanay,et al.  Computers and Mathematics with Applications , 2022 .

[10]  Young Bae Jun,et al.  An adjustable approach to fuzzy soft set based decision making , 2010, J. Comput. Appl. Math..

[11]  Naim Çagman,et al.  Soft matrix theory and its decision making , 2010, Comput. Math. Appl..

[12]  Young Bae Jun,et al.  Note on "(alpha, beta)-fuzzy ideals of hemirings" , 2010, Comput. Math. Appl..

[13]  Wieslaw A. Dudek,et al.  Characterizations of hemirings by their h-ideals , 2010, Comput. Math. Appl..

[14]  Pinaki Majumdar,et al.  Generalised fuzzy soft sets , 2010, Comput. Math. Appl..

[15]  Y. Jun Note on ( a , ) -fuzzy ideals of hemirings , 2010 .

[16]  Wieslaw A. Dudek,et al.  (alpha, Beta)-fuzzy Ideals of Hemirings , 2009, Comput. Math. Appl..

[17]  Yunqiang Yin,et al.  The Characterization of h -semisimple Hemirings , 2009 .

[18]  Xiaoyan Liu,et al.  On some new operations in soft set theory , 2009, Comput. Math. Appl..

[19]  Jianming Zhan,et al.  Generalized fuzzy h-bi-ideals and h-quasi-ideals of hemirings , 2009, Inf. Sci..

[20]  Athar Kharal,et al.  On Fuzzy Soft Sets , 2009, Adv. Fuzzy Syst..

[21]  Young Bae Jun,et al.  Soft semirings , 2008, Comput. Math. Appl..

[22]  Young Bae Jun,et al.  Soft BCK/BCI-algebras , 2008, Comput. Math. Appl..

[23]  Naim Çagman,et al.  Soft sets and soft groups , 2007, Inf. Sci..

[24]  J. Zhan,et al.  On Fuzzy h-Ideals of Hemirings , 2006, J. Syst. Sci. Complex..

[25]  Bijan Davvaz,et al.  (∈, ∈ ∨ q)-fuzzy subnear-rings and ideals , 2006, Soft Comput..

[26]  Young Bae Jun,et al.  On fuzzy h-ideals in hemirings , 2004, Inf. Sci..

[27]  A. R. Roy,et al.  Soft set theory , 2003 .

[28]  A. R. Roy,et al.  An application of soft sets in a decision making problem , 2002 .

[29]  D. Molodtsov Soft set theory—First results , 1999 .

[30]  S. K. Bhakat,et al.  (ε Ɛ V Q)-fuzzy Subgroup , 1996, Fuzzy Sets Syst..

[31]  Y. Chen [The change of serum alpha 1-antitrypsin level in patients with spontaneous pneumothorax]. , 1995, Zhonghua jie he he hu xi za zhi = Zhonghua jiehe he huxi zazhi = Chinese journal of tuberculosis and respiratory diseases.

[32]  W. D. Groot,et al.  Note on the , 1940 .