Coloring random graphs online without creating monochromatic subgraphs

Consider the following generalized notion of graph coloring: a coloring of the vertices of a graph <i>G</i> is <i>valid</i> w.r.t. some given graph <i>F</i> if there is no copy of <i>F</i> in <i>G</i> whose vertices all receive the same color. We study the problem of computing valid colorings of the binomial random graph <i>G</i><sub><i>n,p</i></sub> on <i>n</i> vertices with edge probability <i>p = p(n)</i> in the following online setting: the vertices of an initially hidden instance of <i>G</i><sub><i>n,p</i></sub> are revealed one by one (together with all edges leading to previously revealed vertices) and have to be colored immediately and irrevocably with one of <i>r</i> available colors. It is known that for any fixed graph <i>F</i> and any fixed integer <i>r</i> ≥ 2 this problem has a threshold <i>po (F, r, n)</i> in the following sense: For any function <i>p(n) = o(po)</i> there is a strategy that a.a.s. (asymptotically almost surely, i.e., with probability tending to 1 as <i>n</i> tends to infinity) finds an <i>r</i>-coloring of <i>G</i><sub><i>n,p</i></sub> that is valid w.r.t. <i>F</i> online, and for any function <i>p(n) = ω(po) any</i> online strategy will a.a.s. fail to do so. In this work we establish a general correspondence between this probabilistic problem and a deterministic two-player game in which the random process is replaced by an adversary that is subject to certain restrictions inherited from the random setting. This characterization allows us to compute, for any <i>F</i> and <i>r</i>, a value γ = γ<i>(F, r)</i> such that the threshold of the probabilistic problem is given by <i>po(F, r, n) = n</i><sup><i>−γ</i></sup>. Our approach yields polynomial-time coloring algorithms that a.a.s. find valid colorings of <i>G</i><sub><i>n,p</i></sub> online in the entire regime below the respective thresholds, i.e., for any <i>p(n) = o(n</i><sup><i>-γ</i></sup>).

[1]  D. de Werra,et al.  Graph Coloring Problems , 2013 .

[2]  Michael Krivelevich,et al.  Sharp thresholds for certain Ramsey properties of random graphs , 2000, Random Struct. Algorithms.

[3]  Pawel Pralat A note on small on-line Ramsey numbers for paths and their generalization , 2008, Australas. J Comb..

[4]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[5]  Edward R. Scheinerman Generalized Chromatic Numbers of Random Graphs , 1992, SIAM J. Discret. Math..

[6]  Colin McDiarmid,et al.  The t-Improper Chromatic Number of Random Graphs , 2007, Combinatorics, Probability and Computing.

[7]  Hal A. Kierstead,et al.  On-line Ramsey Numbers for Paths and Stars , 2008, Discret. Math. Theor. Comput. Sci..

[8]  Colin McDiarmid,et al.  Topics in Chromatic Graph Theory: Colouring random graphs , 2015 .

[9]  Hal A. Kierstead,et al.  Coloring number and on-line Ramsey theory for graphs and hypergraphs , 2009, Comb..

[10]  Béla Bollobás,et al.  Generalized Chromatic Numbers of Random Graphs , 1995, Random Struct. Algorithms.

[11]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[12]  Yoshiharu Kohayakawa,et al.  Ramsey Games Against a One-Armed Bandit , 2003, Comb. Probab. Comput..

[13]  Tomasz Luczak A note on the sharp concentration of the chromatic number of random graphs , 1991, Comb..

[14]  Robin Wilson,et al.  Modern Graph Theory , 2013 .

[15]  Amin Coja-Oghlan,et al.  Algorithmic Barriers from Phase Transitions , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[16]  Hal A. Kierstead,et al.  On-line Ramsey Theory , 2004, Electron. J. Comb..

[17]  Reto Spöhel,et al.  Online vertex colorings of random graphs without monochromatic subgraphs , 2007, SODA '07.

[18]  B. Bollobás Threshold functions for small subgraphs , 1981 .

[19]  Pawee,et al.  R(3, 4) = 17 , .

[20]  Béla Bollobás,et al.  The chromatic number of random graphs , 1988, Comb..

[21]  Noga Alon,et al.  List Coloring of Random and Pseudo-Random Graphs , 1999, Comb..

[22]  D. W. MATULA Expose-and-merge exploration and the chromatic number of a random graph , 1987, Comb..

[23]  Jane Butterfield,et al.  On-line Ramsey Theory for Bounded Degree Graphs , 2011, Electron. J. Comb..

[24]  Ehud Friedgut,et al.  Hunting for sharp thresholds , 2005, Random Struct. Algorithms.

[25]  Reto Spöhel,et al.  Probabilistic One-Player Ramsey Games via Deterministic Two-Player Games , 2012, SIAM J. Discret. Math..

[26]  Dongsu Kim,et al.  Colored Prüfer Codes for k-Edge Colored Trees , 2004, Electron. J. Comb..

[27]  J. Pach,et al.  Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .

[28]  Alan M. Frieze,et al.  The game chromatic number of random graphs , 2008, Random Struct. Algorithms.

[29]  Reto Spöhel,et al.  On the path-avoidance vertex-coloring game , 2011, Electron. Notes Discret. Math..

[30]  Benny Sudakov,et al.  On the Strong Chromatic Number of Random Graphs , 2007, Combinatorics, Probability and Computing.

[31]  Michael Krivelevich,et al.  Equitable coloring of random graphs , 2009 .

[32]  Andrzej Ruciński,et al.  Globally sparse vertex-Ramsey graphs , 1994 .

[33]  Andrzej Rucinski,et al.  Ramsey properties of random graphs , 1992, J. Comb. Theory, Ser. B.

[34]  Dennis Davenport,et al.  The Double Riordan Group , 2011, Electron. J. Comb..

[35]  Reto Spöhel,et al.  Online vertex-coloring games in random graphs , 2010, Comb..

[36]  Angelika Steger,et al.  Online Ramsey Games in Random Graphs , 2009, Comb. Probab. Comput..

[37]  Jane Butterfield,et al.  Online Ramsey games for triangles in random graphs , 2010, Discret. Math..

[38]  David Conlon,et al.  On-line Ramsey Numbers , 2009, SIAM J. Discret. Math..

[39]  Ehud Friedgut,et al.  A Sharp Threshold for k-Colorability , 1999, Random Struct. Algorithms.

[40]  Noga Alon,et al.  The concentration of the chromatic number of random graphs , 1997, Comb..

[41]  W. T. Gowers,et al.  RANDOM GRAPHS (Wiley Interscience Series in Discrete Mathematics and Optimization) , 2001 .

[42]  William Y. C. Chen,et al.  The Abel-Zeilberger Algorithm , 2011, Electron. J. Comb..

[43]  Alan M. Frieze,et al.  Avoiding a giant component , 2001, Random Struct. Algorithms.

[44]  József Beck,et al.  There is no fast method for finding monochromatic complete subgraphs , 1983, J. Comb. Theory, Ser. B.

[45]  Reto Spöhel,et al.  Coloring random graphs online without creating monochromatic subgraphs , 2011, SODA 2011.

[46]  Angelika Steger,et al.  Upper Bounds for Online Ramsey Games in Random Graphs , 2009, Comb. Probab. Comput..

[47]  Reto Spöhel,et al.  Small subgraphs in random graphs and the power of multiple choices , 2011, J. Comb. Theory, Ser. B.

[48]  Andrzej Rucinski,et al.  Two variants of the size Ramsey number , 2005, Discuss. Math. Graph Theory.

[49]  Uriel Feige,et al.  Zero Knowledge and the Chromatic Number , 1998, J. Comput. Syst. Sci..

[50]  Gary Chartrand,et al.  Chromatic Graph Theory , 2008 .