The quantum stochastic equation is unitarily equivalent to a symmetric boundary value problem for the Schrödinger equation

We prove that the solution of the Hudson-Parthasarathy quantum stochastic differential equation in the Fock space coincides with the solution of a symmetric boundary value problem for the Schrödinger equation in the interaction representation generated by the energy operator of the environment. The boundary conditions describe the jumps in the phase and the amplitude of the Fourier transforms of the Fock vector components as any of its arguments changes the sign. The corresponding Markov evolution equation (the Lindblad equation or the “master equation”) is derived from the boundary value problem for the Schrödinger equation.

[1]  K. Parthasarathy An Introduction to Quantum Stochastic Calculus , 1992 .

[2]  A. Chebotarev,et al.  Sufficient conditions for conservativity of quantum dynamical semigroups , 1993 .

[3]  P. Meyer,et al.  Quantum Probability for Probabilists , 1993 .

[4]  Tosio Kato Perturbation theory for linear operators , 1966 .

[5]  F. Berezin,et al.  Method of Second Quantization , 1966 .

[6]  Explosion problems for symmetric diffusion processes , 1986 .

[7]  A. Chebotarev Necessary and sufficient conditions for conservativeness of dynamical semigroups , 1991 .

[8]  Alexander Mikhailovich Chebotarev,et al.  Симметризованная форма стохастического уравнения Хадсона - Партасарати@@@Symmetric form of the Hudson-Parthasarathy stochastic equation , 1996 .

[9]  A. Chebotarev,et al.  Об уравнении Линдблада с неограниченными переменными коэффициентами@@@On the Lindblad equation with unbounded time-dependent coefficients , 1997 .

[10]  Sufficient conditions of the conservatism of a minimal dynamical semigroup , 1992 .

[11]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[12]  B. V. Rajarama Bhat,et al.  Markov dilations of nonconservative dynamical semigroups and a quantum boundary theory , 1995 .

[13]  R. Khas'minskii Ergodic Properties of Recurrent Diffusion Processes and Stabilization of the Solution to the Cauchy Problem for Parabolic Equations , 1960 .

[14]  A. Holevo On conservativity of covariant dynamical semigroups , 1993 .

[15]  Robin L. Hudson,et al.  Quantum Ito's formula and stochastic evolutions , 1984 .

[16]  S. Albeverio,et al.  Square Powers of Singularly Perturbed Operators , 1995 .

[17]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[18]  E. B. Davies Quantum theory of open systems , 1976 .

[19]  Symmetric form of the Hudson-Parthasarathy stochastic equation , 1996 .

[20]  Collett,et al.  Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. , 1985, Physical review. A, General physics.

[21]  On the lindblad equation with unbounded time-dependent coefficients , 1997 .