Theoretical Computer Science: Computability, Decidability and Logic

This chapter deals with a question in the very core of IA: what can be computed by a machine? An agreement has been reached on the answer brought by Alan Turing in 1936. Indeed, all other proposed approaches have led to exactly the same answer. Thus, there is a mathematical model of what can be done by a machine. And this has allowed to prove surprising results which feed the reflection on intelligence and machines.

[1]  Maurice Margenstern The Domino Problem of the Hyperbolic Plane is Undecidable , 2007, Bull. EATCS.

[2]  M. Minsky Recursive Unsolvability of Post's Problem of "Tag" and other Topics in Theory of Turing Machines , 1961 .

[3]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[4]  S. Kleene General recursive functions of natural numbers , 1936 .

[5]  M. Rabin Decidability of second-order theories and automata on infinite trees. , 1969 .

[6]  D. Prawitz Natural Deduction: A Proof-Theoretical Study , 1965 .

[7]  Nachum Dershowitz,et al.  A Natural Axiomatization of Computability and Proof of Church's Thesis , 2008, Bulletin of Symbolic Logic.

[8]  T. Rado On non-computable functions , 1962 .

[9]  Daniel N. Osherson,et al.  Systems That Learn: An Introduction to Learning Theory for Cognitive and Computer Scientists , 1990 .

[10]  Dirk van Dalen,et al.  Logic and structure , 1980 .

[11]  D. Lacombe,et al.  La théorie des fonctions récursives et ses applications. (Exposé d'information générale) , 1960 .

[12]  R. M. Blake The Paradox of Temporal Process , 1926 .

[13]  Maurice Margenstern,et al.  Surprising Areas in the Quest for Small Universal Devices , 2006, MFCSIT.

[14]  John E. Savage,et al.  Models of computation - exploring the power of computing , 1998 .

[15]  Jan Ekman,et al.  Normal proofs in set theory , 1994 .

[16]  A. Tarski,et al.  Sur les ensembles définissables de nombres réels , 1931 .

[17]  Claude E. Shannon,et al.  Mathematical Theory of the Differential Analyzer , 1941 .

[18]  P. Odifreddi Classical recursion theory , 1989 .

[19]  R. Smullyan Diagonalization and Self-Reference , 1994 .

[20]  S. C. Kleene,et al.  Introduction to Metamathematics , 1952 .

[21]  K. Schütte Beweistheoretische Erfassung der unendlichen Induktion in der Zahlentheorie , 1950 .

[22]  Hava T. Siegelmann,et al.  On the Computational Power of Neural Nets , 1995, J. Comput. Syst. Sci..

[23]  Martin D. Davis,et al.  Computability and Unsolvability , 1959, McGraw-Hill Series in Information Processing and Computers.

[24]  Robin Gandy,et al.  Church's Thesis and Principles for Mechanisms , 1980 .

[25]  Per Martin-Löf,et al.  The Definition of Random Sequences , 1966, Inf. Control..

[26]  J. Marion From Turing machines to computer viruses , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[27]  M. Delorme,et al.  An Introduction to Cellular Automata , 1999 .

[28]  Edwin J. Beggs,et al.  Computational complexity with experiments as oracles , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[29]  Yuri Gurevich,et al.  Sequential abstract-state machines capture sequential algorithms , 2000, TOCL.

[30]  Serge Grigorieff,et al.  Synchronization of a bounded degree graph of cellular automata with nonuniform delays in time D floor(logm D) , 2006, Theor. Comput. Sci..

[31]  Frank Plumpton Ramsey,et al.  On a Problem of Formal Logic , 1930 .

[32]  A. Mostowski On computable sequences , 1957 .

[33]  Donald E. Knuth,et al.  The Art of Computer Programming: Volume 3: Sorting and Searching , 1998 .

[34]  M. A. Nielsen Computable Functions, Quantum Measurements, and Quantum Dynamics , 1997 .

[35]  M. Nivat Fiftieth volume of theoretical computer science , 1988 .

[36]  Yiannis N. Moschovakis,et al.  What Is an Algorithm? , 2012, SOFSEM.

[37]  A. N. Kolmogorov Combinatorial foundations of information theory and the calculus of probabilities , 1983 .

[38]  Arnold Schönhage Storage Modification Machines , 1980, SIAM J. Comput..

[39]  William W. Tait,et al.  Intensional interpretations of functionals of finite type I , 1967, Journal of Symbolic Logic.

[40]  Daniel S. Graça,et al.  Computability with polynomial differential equations , 2008, Adv. Appl. Math..

[41]  Robert L. Berger The undecidability of the domino problem , 1966 .

[42]  Eugene Asarin,et al.  Noisy Turing Machines , 2005, ICALP.

[43]  J. Roger Hindley,et al.  Introduction to Combinators and Lambda-Calculus , 1986 .

[44]  Olivier Bournez,et al.  The General Purpose Analog Computer and Computable Analysis are Two Equivalent Paradigms of Analog Computation , 2006, TAMC.

[45]  M. Delorme,et al.  Cellular automata : a parallel model , 1999 .

[46]  W. V. Quine,et al.  Concatenation as a basis for arithmetic , 1946, Journal of Symbolic Logic.

[47]  Toby Ord,et al.  The many forms of hypercomputation , 2006, Appl. Math. Comput..

[48]  Serge Grigorieff,et al.  Evolving MultiAlgebras unify all usual sequential computation models , 2010, STACS.

[49]  W. Daniel Hillis,et al.  The connection machine , 1985 .

[50]  Tien D. Kieu,et al.  Using Biased Coins as Oracles , 2009, Int. J. Unconv. Comput..

[51]  Wilfried Sieg,et al.  Hilbert's Programs: 1917–1922 , 1999, Bulletin of Symbolic Logic.

[52]  S. Smale,et al.  On a theory of computation and complexity over the real numbers; np-completeness , 1989 .

[53]  Daniel Fredholm,et al.  System T, Call-by-Value and the Minimum Problem , 1998, Theor. Comput. Sci..

[54]  Yuri Gurevich,et al.  Gurevich Abstract State Machines and Schoenhage Storage Modification Machines , 1997, J. Univers. Comput. Sci..

[55]  Daniel Leivant Reasoning about functional programs and complexity classes associated with type disciplines , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[56]  J. Roger Hindley,et al.  Lambda calculus with types (Perspectives in Logic) , 2014 .

[57]  Andreas Blass,et al.  Abstract state machines capture parallel algorithms: Correction and extension , 2006, TOCL.

[58]  Jacqueline Vauzeilles,et al.  Strong planning under uncertainty in domains with numerous but identical elements (a generic approach) , 2007, Theor. Comput. Sci..

[59]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[60]  Benjamin Werner,et al.  Une Théorie des Constructions Inductives , 1994 .

[61]  Gilles Dowek,et al.  Proof normalization modulo , 2003, Journal of Symbolic Logic.

[62]  Daniel Silva Graça,et al.  Some recent developments on Shannon's General Purpose Analog Computer , 2004, Math. Log. Q..

[63]  Denis Cousineau,et al.  Embedding Pure Type Systems in the Lambda-Pi-Calculus Modulo , 2007, TLCA.

[64]  Yuri Gurevich The Decision Problem for Standard Classes , 1976, J. Symb. Log..

[65]  Hugo Herbelin,et al.  The duality of computation , 2000, ICFP '00.

[66]  S. Kleene Recursive predicates and quantifiers , 1943 .

[67]  H. Weyl Philosophie der Mathematik und Naturwissenschaft , 1927 .

[68]  W. Hillis Richard Feynman and the connection machine , 1989 .

[69]  Olivier Bournez,et al.  Polynomial differential equations compute all real computable functions on computable compact intervals , 2007, J. Complex..

[70]  G. Dowek Les métamorphoses du calcul : une étonnante histoire de mathématiques , 2007 .

[71]  Yiannis N. Moschovakis,et al.  On primitive recursive algorithms and the greatest common divisor function , 2003, Theor. Comput. Sci..

[72]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[73]  Tao Jiang The Synchronization of Nonuniform Networks of Finite Automata , 1992, Inf. Comput..

[74]  Claude Kirchner,et al.  Theorem Proving Modulo , 2003, Journal of Automated Reasoning.

[75]  L. M. Pavlotskaya,et al.  Solvability of the halting problem for certain classes of Turing machines , 1973 .

[76]  G. Gentzen Die Widerspruchsfreiheit der reinen Zahlentheorie , 1936 .

[77]  Lou van den Dries Generating the Greatest Common Divisor, and Limitations of Primitive Recursive Algorithms , 2003, Found. Comput. Math..

[78]  Ernst W. Mayr An Algorithm for the General Petri Net Reachability Problem , 1984, SIAM J. Comput..

[79]  Raymond M. Smullyan Recursion theory for metamathematics , 1993, Oxford logic guides.

[80]  Erich Grädel,et al.  Quantum Computing and Abstract State Machines , 2003, Abstract State Machines.

[81]  Manfred Kudlek,et al.  Small Deterministic Turing Machines , 1996, Theor. Comput. Sci..

[82]  José Félix Costa,et al.  Analog computers and recursive functions over the reals , 2003, J. Complex..

[83]  Andrew Chi-Chih Yao,et al.  Classical physics and the Church--Turing Thesis , 2003, JACM.

[84]  Stephen Cole Kleene Mathematical Logic , 1967 .

[85]  Christine Paulin-Mohring,et al.  Inductive Definitions in the system Coq - Rules and Properties , 1993, TLCA.

[86]  A. Church An Unsolvable Problem of Elementary Number Theory , 1936 .

[87]  Andreas Blass,et al.  Abstract state machines capture parallel algorithms , 2003, TOCL.

[88]  A. N. Shiryayev On the Notion of Algorithm , 1993 .

[89]  Richard M. Friedberg,et al.  Three theorems on recursive enumeration. I. Decomposition. II. Maximal set. III. Enumeration without duplication , 1958, Journal of Symbolic Logic.

[90]  M. Hogarth Non-Turing Computers and Non-Turing Computability , 1994, PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association.

[91]  Cristian S. Calude,et al.  Coins, Quantum Measurements, and Turing's Barrier , 2002, Quantum Inf. Process..

[92]  Saul A. Kripke,et al.  Semantical Analysis of Intuitionistic Logic I , 1965 .

[93]  H. Siegelmann,et al.  Analog computation with dynamical systems , 1998 .

[94]  Joel David Hamkins,et al.  Infinite Time Turing Machines , 1998, Journal of Symbolic Logic.

[95]  Julia Robinson,et al.  Definability and decision problems in arithmetic , 1949, Journal of Symbolic Logic.

[96]  Marcel Crabbé,et al.  Stratification and cut-elimination , 1991, Journal of Symbolic Logic.

[97]  S. Shelah Decidability of a portion of the predicate calculus , 1977 .

[98]  Olivier Bournez,et al.  A Survey on Continuous Time Computations , 2009, ArXiv.

[99]  Michel Parigot,et al.  Lambda-Mu-Calculus: An Algorithmic Interpretation of Classical Natural Deduction , 1992, LPAR.

[100]  Alan M. Turing,et al.  Systems of Logic Based on Ordinals , 2012, Alan Turing's Systems of Logic.

[101]  Thierry Coquand,et al.  The Calculus of Constructions , 1988, Inf. Comput..

[102]  Toby Ord,et al.  Hypercomputation: computing more than the Turing machine , 2002, ArXiv.

[103]  A. Grzegorczyk On the definitions of computable real continuous functions , 1957 .

[104]  Michel Parigot,et al.  Programming with Proofs , 1990, J. Inf. Process. Cybern..

[105]  Hrant.B. Marandjan Handbook of Theoretical Computer Science. Volume A: Algorithms and Complexity. Volume B: Formal Models and Semantics: Jan van Leeuwen, ed., (Elsevier, Amsterdam, Netherlands/The MIT Press, Cambridge, MA, 1990) , 1995 .

[106]  Jean-Yves Girard,et al.  Linear Logic , 1987, Theor. Comput. Sci..

[107]  Daniel Fredholm Computing Minimum with Primitive Recursion over Lists , 1996, Theor. Comput. Sci..

[108]  Wilfried Sieg,et al.  Church Without Dogma: Axioms for Computability , 2008 .

[109]  Christian Urban Strong Normalisation for a Gentzen-like Cut-Elimination Procedure , 2001, TLCA.

[110]  J. Girard Une Extension De ĽInterpretation De Gödel a ĽAnalyse, Et Son Application a ĽElimination Des Coupures Dans ĽAnalyse Et La Theorie Des Types , 1971 .

[111]  Marian Boykan Pour-El,et al.  Computability in analysis and physics , 1989, Perspectives in Mathematical Logic.

[112]  Wilfried Sieg Step by recursive step: Church's analysis of effective calculability , 1997, Bull. Symb. Log..

[113]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[114]  Sara Negri,et al.  Structural proof theory , 2001 .

[115]  J. Koenigsmann Defining $\mathbb{Z}$ in $\mathbb{Q}$ , 2010, 1011.3424.

[116]  G. Makanin The Problem of Solvability of Equations in a Free Semigroup , 1977 .

[117]  Yuri Gurevich,et al.  The Classical Decision Problem , 1997, Perspectives in Mathematical Logic.

[118]  Z.A. Melzak An Informal Arithmetical Approach to Computability and Computation , 1961, Canadian Mathematical Bulletin.

[119]  Klaus Weihrauch,et al.  Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.

[120]  Lars Hallnäs,et al.  On normalization of proofs in set theory , 1983 .

[121]  J. Büchi Weak Second‐Order Arithmetic and Finite Automata , 1960 .

[122]  M. Crabbé Non-normalisation de ZF , 1974 .

[123]  Stephen A. Cook,et al.  Time Bounded Random Access Machines , 1973, J. Comput. Syst. Sci..

[124]  Fred Cohen,et al.  Computer viruses—theory and experiments , 1990 .

[125]  Edith Hemaspaandra,et al.  Nondeterminism fairness and a fundamental analogy , 1989, Bull. EATCS.

[126]  B. Copeland,et al.  Beyond the universal Turing machine , 1999 .

[127]  James P. Jones Universal Diophantine Equation , 1982, J. Symb. Log..

[128]  Christine Paulin-Mohring,et al.  Synthesis of ML Programs in the System Coq , 1993, J. Symb. Comput..

[129]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[130]  Marvin Minsky,et al.  Computation : finite and infinite machines , 2016 .

[131]  Orna Grumberg,et al.  A game-based framework for CTL counterexamples and 3-valued abstraction-refinement , 2007, TOCL.

[132]  E. F. Codd,et al.  Cellular automata , 1968 .

[133]  Loïc Colson About Primitive Recursive Algorithms , 1991, Theor. Comput. Sci..

[134]  Nachum Dershowitz,et al.  The Church-Turing Thesis over Arbitrary Domains , 2008, Pillars of Computer Science.

[135]  Vannevar Bush,et al.  The differential analyzer. A new machine for solving differential equations , 1931 .

[136]  Jean-Baptiste Yunès Fault Tolerant Solutions to the Firing Squad Synchronization Problem in Linear Cellular Automata , 2006, J. Cell. Autom..

[137]  Neil D. Jones,et al.  Computability and complexity - from a programming perspective , 1997, Foundations of computing series.

[138]  Abraham Robinson,et al.  Random-Access Stored-Program Machines, an Approach to Programming Languages , 1964, JACM.

[139]  W. Ackermann Zum Hilbertschen Aufbau der reellen Zahlen , 1928 .

[140]  B. Jack Copeland,et al.  The Broad Conception of Computation , 1997 .

[141]  Von Kurt Gödel,et al.  ÜBER EINE BISHER NOCH NICHT BENÜTZTE ERWEITERUNG DES FINITEN STANDPUNKTES , 1958 .