The Cosmic Graph: Optimal Information Extraction from Large-Scale Structure using Catalogues

We present an implicit likelihood approach to quantifying cosmological information over discrete catalogue data, assembled as graphs. To do so, we explore cosmological parameter constraints using mock dark matter halo catalogues. We employ Information Maximising Neural Networks (IMNNs) to quantify Fisher information extraction as a function of graph representation. We a) demonstrate the high sensitivity of modular graph structure to the underlying cosmology in the noise-free limit, b) show that graph neural network summaries automatically combine mass and clustering information through comparisons to traditional statistics, c) demonstrate that networks can still extract information when catalogues are subject to noisy survey cuts

[1]  Daneng Yang,et al.  Graph model for the clustering of dark matter halos , 2022, Physical Review Research.

[2]  L. Verde,et al.  Quijote-PNG: Simulations of Primordial Non-Gaussianity and the Information Content of the Matter Field Power Spectrum and Bispectrum , 2022, The Astrophysical Journal.

[3]  S. Ho,et al.  Cosmological Information in the Marked Power Spectrum of the Galaxy Field , 2022, The Astrophysical Journal.

[4]  F. Villaescusa-Navarro,et al.  Learning Cosmology and Clustering with Cosmic Graphs , 2022, The Astrophysical Journal.

[5]  P. Battaglia,et al.  Rediscovering orbital mechanics with machine learning , 2022, Machine Learning: Science and Technology.

[6]  Adrian E Bayer,et al.  The GIGANTES Data Set: Precision Cosmology from Voids in the Machine-learning Era , 2021, The Astrophysical Journal.

[7]  Max Welling,et al.  E(n) Equivariant Normalizing Flows , 2021, NeurIPS.

[8]  Joan Bruna,et al.  Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges , 2021, ArXiv.

[9]  A. Heavens,et al.  On the accuracy and precision of correlation functions and field-level inference in cosmology , 2021, Monthly Notices of the Royal Astronomical Society: Letters.

[10]  T. Charnock,et al.  Catalog-free modeling of galaxy types in deep images. Massive dimensional reduction with neural networks , 2021, Astronomy & Astrophysics.

[11]  S. Ho,et al.  Neural Networks as Optimal Estimators to Marginalize Over Baryonic Effects , 2020, The Astrophysical Journal.

[12]  Niall Jeffrey,et al.  Solving high-dimensional parameter inference: marginal posterior densities & Moment Networks , 2020, ArXiv.

[13]  Laurence Perreault Levasseur,et al.  deep21: a deep learning method for 21 cm foreground removal , 2020, Journal of Cosmology and Astroparticle Physics.

[14]  Rui Xu,et al.  Discovering Symbolic Models from Deep Learning with Inductive Biases , 2020, NeurIPS.

[15]  J. Forero-Romero,et al.  Cosmological parameter estimation from large-scale structure deep learning , 2019, Science China Physics, Mechanics & Astronomy.

[16]  I. Csabai,et al.  An improved cosmological parameter inference scheme motivated by deep learning , 2018, Nature Astronomy.

[17]  Razvan Pascanu,et al.  Relational inductive biases, deep learning, and graph networks , 2018, ArXiv.

[18]  Kevin Gimpel,et al.  Gaussian Error Linear Units (GELUs) , 2016, 1606.08415.

[19]  Barnabás Póczos,et al.  Estimating Cosmological Parameters from the Dark Matter Distribution , 2016, ICML.

[20]  F. Leclercq Bayesian large-scale structure inference and cosmic web analysis , 2015, 1512.04985.

[21]  S. Murray HMF: Halo Mass Function calculator , 2014 .

[22]  H. Hotelling Mathematical Methods of Statistics. Harald Cramér , 1947 .

[23]  H. Cramér Mathematical methods of statistics , 1946 .