The Cosmic Graph: Optimal Information Extraction from Large-Scale Structure using Catalogues
暂无分享,去创建一个
[1] Daneng Yang,et al. Graph model for the clustering of dark matter halos , 2022, Physical Review Research.
[2] L. Verde,et al. Quijote-PNG: Simulations of Primordial Non-Gaussianity and the Information Content of the Matter Field Power Spectrum and Bispectrum , 2022, The Astrophysical Journal.
[3] S. Ho,et al. Cosmological Information in the Marked Power Spectrum of the Galaxy Field , 2022, The Astrophysical Journal.
[4] F. Villaescusa-Navarro,et al. Learning Cosmology and Clustering with Cosmic Graphs , 2022, The Astrophysical Journal.
[5] P. Battaglia,et al. Rediscovering orbital mechanics with machine learning , 2022, Machine Learning: Science and Technology.
[6] Adrian E Bayer,et al. The GIGANTES Data Set: Precision Cosmology from Voids in the Machine-learning Era , 2021, The Astrophysical Journal.
[7] Max Welling,et al. E(n) Equivariant Normalizing Flows , 2021, NeurIPS.
[8] Joan Bruna,et al. Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges , 2021, ArXiv.
[9] A. Heavens,et al. On the accuracy and precision of correlation functions and field-level inference in cosmology , 2021, Monthly Notices of the Royal Astronomical Society: Letters.
[10] T. Charnock,et al. Catalog-free modeling of galaxy types in deep images. Massive dimensional reduction with neural networks , 2021, Astronomy & Astrophysics.
[11] S. Ho,et al. Neural Networks as Optimal Estimators to Marginalize Over Baryonic Effects , 2020, The Astrophysical Journal.
[12] Niall Jeffrey,et al. Solving high-dimensional parameter inference: marginal posterior densities & Moment Networks , 2020, ArXiv.
[13] Laurence Perreault Levasseur,et al. deep21: a deep learning method for 21 cm foreground removal , 2020, Journal of Cosmology and Astroparticle Physics.
[14] Rui Xu,et al. Discovering Symbolic Models from Deep Learning with Inductive Biases , 2020, NeurIPS.
[15] J. Forero-Romero,et al. Cosmological parameter estimation from large-scale structure deep learning , 2019, Science China Physics, Mechanics & Astronomy.
[16] I. Csabai,et al. An improved cosmological parameter inference scheme motivated by deep learning , 2018, Nature Astronomy.
[17] Razvan Pascanu,et al. Relational inductive biases, deep learning, and graph networks , 2018, ArXiv.
[18] Kevin Gimpel,et al. Gaussian Error Linear Units (GELUs) , 2016, 1606.08415.
[19] Barnabás Póczos,et al. Estimating Cosmological Parameters from the Dark Matter Distribution , 2016, ICML.
[20] F. Leclercq. Bayesian large-scale structure inference and cosmic web analysis , 2015, 1512.04985.
[21] S. Murray. HMF: Halo Mass Function calculator , 2014 .
[22] H. Hotelling. Mathematical Methods of Statistics. Harald Cramér , 1947 .
[23] H. Cramér. Mathematical methods of statistics , 1946 .