A Maximum Entropy Enhancement for a Family of High-Resolution Spectral Estimators

Structured covariances occurring in spectral analysis, filtering and identification need to be estimated from a finite observation record. The corresponding sample covariance usually fails to possess the required structure. This is the case, for instance, in the Byrnes-Georgiou-Lindquist THREE-like tunable, high-resolution spectral estimators. There, the output covariance Σ of a linear filter is needed to initialize the spectral estimation technique. The sample covariance estimate Σ, however, is usually not compatible with the filter. In this paper, we present a new, systematic way to overcome this difficulty. The new estimate Σο is obtained by solving an ancillary problem with an entropic-type criterion. Extensive scalar and multivariate simulation shows that this new approach consistently leads to a significant improvement of the spectral estimators performances.

[1]  Michele Pavon,et al.  A Globally Convergent Matricial Algorithm for Multivariate Spectral Estimation , 2008, IEEE Transactions on Automatic Control.

[2]  Tryphon T. Georgiou,et al.  A new approach to spectral estimation: a tunable high-resolution spectral estimator , 2000, IEEE Trans. Signal Process..

[3]  Michele Pavon,et al.  On the Georgiou-Lindquist approach to constrained Kullback-Leibler approximation of spectral densities , 2006, IEEE Transactions on Automatic Control.

[4]  Tryphon T. Georgiou,et al.  Realization of power spectra from partial covariance sequences , 1987, IEEE Trans. Acoust. Speech Signal Process..

[5]  Tryphon T. Georgiou,et al.  Remarks on control design with degree constraint , 2006, IEEE Transactions on Automatic Control.

[6]  Tryphon T. Georgiou,et al.  Spectral estimation via selective harmonic amplification , 2001, IEEE Trans. Autom. Control..

[7]  E. Jaynes On the rationale of maximum-entropy methods , 1982, Proceedings of the IEEE.

[8]  Tryphon T. Georgiou,et al.  Solution of the general moment problem via a one-parameter imbedding , 2005, IEEE Transactions on Automatic Control.

[9]  C. Byrnes,et al.  Generalized interpolation in $H^\infty$ with a complexity constraint , 2004 .

[10]  Tryphon T. Georgiou,et al.  Kullback-Leibler approximation of spectral density functions , 2003, IEEE Trans. Inf. Theory.

[11]  D. Luenberger,et al.  Estimation of structured covariance matrices , 1982, Proceedings of the IEEE.

[12]  Anders Lindquist,et al.  Identifiability and Well-Posedness of Shaping-Filter Parameterizations: A Global Analysis Approach , 2002, SIAM J. Control. Optim..

[13]  Michele Pavon,et al.  On the well-posedness of multivariate spectrum approximation and convergence of high-resolution spectral estimators , 2009, Syst. Control. Lett..

[14]  Tryphon T. Georgiou,et al.  A Convex Optimization Approach to ARMA Modeling , 2008, IEEE Transactions on Automatic Control.

[15]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[16]  Anders Lindquist,et al.  Matrix-valued Nevanlinna-Pick interpolation with complexity constraint: an optimization approach , 2003, IEEE Trans. Autom. Control..

[17]  C. Byrnes,et al.  On the partial stochastic realization problem , 1997, IEEE Trans. Autom. Control..

[18]  Tryphon T. Georgiou,et al.  Noninvasive estimation of tissue temperature via high-resolution spectral analysis techniques , 2005, IEEE Transactions on Biomedical Engineering.

[19]  Tryphon T. Georgiou,et al.  The structure of state covariances and its relation to the power spectrum of the input , 2002, IEEE Trans. Autom. Control..

[20]  Tryphon T. Georgiou,et al.  A generalized entropy criterion for Nevanlinna-Pick interpolation with degree constraint , 2001, IEEE Trans. Autom. Control..

[21]  L. Goddard Information Theory , 1962, Nature.

[22]  Tryphon T. Georgiou,et al.  Spectral analysis based on the state covariance: the maximum entropy spectrum and linear fractional parametrization , 2002, IEEE Trans. Autom. Control..

[23]  M. Pavon,et al.  Further Results on the Byrnes-Georgiou-Lindquist Generalized Moment Problem , 2007 .

[24]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[25]  Anders Lindquist,et al.  Important Moments in Systems and Control , 2008, SIAM J. Control. Optim..

[26]  C. Byrnes,et al.  A Convex Optimization Approach to the Rational Covariance Extension Problem , 1999 .

[27]  B. Hofmann-Wellenhof,et al.  Introduction to spectral analysis , 1986 .

[28]  Tryphon T. Georgiou,et al.  The interpolation problem with a degree constraint , 1999, IEEE Trans. Autom. Control..

[29]  C. Byrnes,et al.  A complete parameterization of all positive rational extensions of a covariance sequence , 1995, IEEE Trans. Autom. Control..

[30]  Johan Karlsson,et al.  Minimal Itakura-Saito distance and covariance interpolation , 2008, 2008 47th IEEE Conference on Decision and Control.

[31]  Michele Pavon,et al.  Hellinger Versus Kullback–Leibler Multivariable Spectrum Approximation , 2007, IEEE Transactions on Automatic Control.

[32]  Francesca P. Carli,et al.  A Maximum Entropy Solution of the Covariance Extension Problem for Reciprocal Processes , 2011, IEEE Transactions on Automatic Control.

[33]  T. Georgiou Structured Covariances and Related Approximation Questions , 2003 .