Lanczos Methods for the Solution of Nonsymmetric Systems of Linear Equations
暂无分享,去创建一个
[1] Hlawka. Theory of the integral , 1939 .
[2] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .
[3] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[4] R. T. Gregory,et al. On Lanczos’ Algorithm for Tridiagonalizing Matrices , 1961 .
[5] Alston S. Householder,et al. The Theory of Matrices in Numerical Analysis , 1964 .
[6] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[7] W. Rudin. Real and complex analysis , 1968 .
[8] Tetsuro Yamamoto. On Lanczos' algorithm for tri-diagonalization , 1968 .
[9] S. Eisenstat,et al. The Modified Conjugate Residual Method for Partial Differential Equations. , 1977 .
[10] J. Meijerink,et al. An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .
[11] I. Gustafsson. Stability and rate of convergence of modified incomplete Cholesky factorization methods , 1979 .
[12] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[13] Y. Saad. The Lanczos Biorthogonalization Algorithm and Other Oblique Projection Methods for Solving Large Unsymmetric Systems , 1982 .
[14] Michael A. Saunders,et al. LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.
[15] D. Taylor. Analysis of the Look Ahead Lanczos Algorithm. , 1982 .
[16] Kang C. Jea,et al. On the simplification of generalized conjugate-gradient methods for nonsymmetrizable linear systems , 1983 .
[17] Zhishun A. Liu,et al. A Look Ahead Lanczos Algorithm for Unsymmetric Matrices , 1985 .
[18] Y. Saad,et al. Conjugate gradient-like algorithms for solving nonsymmetric linear systems , 1985 .
[19] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[20] J. Cullum,et al. A Practical Procedure for Computing Eigenvalues of Large Sparse Nonsymmetric Matrices , 1986 .
[21] W. Joubert,et al. Necessary and sufficient conditions for the simplification of generalized conjugate-gradient algorithms , 1987 .
[22] H. Langtangen,et al. A numerical comparison of conjugate gradient‐like methods , 1988 .
[23] P. Sonneveld. CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .
[24] A. Greenbaum. Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences , 1989 .
[25] J. Cullum,et al. A generalized nonsymmetric Lanczos procedure , 1989 .
[26] W. Joubert,et al. Iterative methods for nonsymmetric linear systems , 1990 .
[27] W. Joubert. Generalized conjugate gradient and Lanczos methods for the solution of nonsymmetric systems of linear equations , 1990 .
[28] T. Manteuffel,et al. A taxonomy for conjugate gradient methods , 1990 .
[29] M. Gutknecht. The Unsymmetric Lanczos Algorithms And Their Relations To Pad ' E Approximation, Continued Fractions , 1990 .
[30] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[31] Beresford N. Parlett,et al. Reduction to Tridiagonal Form and Minimal Realizations , 1992, SIAM J. Matrix Anal. Appl..
[32] Roland W. Freund,et al. Conjugate Gradient-Type Methods for Linear Systems with Complex Symmetric Coefficient Matrices , 1992, SIAM J. Sci. Comput..
[33] Anthony T. Chronopoulos,et al. An efficient nonsymmetric Lanczos method on parallel vector computers , 1992 .
[34] Roland W. Freund,et al. An Implementation of the Look-Ahead Lanczos Algorithm for Non-Hermitian Matrices , 1993, SIAM J. Sci. Comput..
[35] M. Gutknecht. A Completed Theory of the Unsymmetric Lanczos Process and Related Algorithms. Part II , 1994, SIAM J. Matrix Anal. Appl..