Lanczos Methods for the Solution of Nonsymmetric Systems of Linear Equations

The Lanczos or biconjugate gradient method is often an effective means for solving nonsymmetric systems of linear equations. However, the method sometimes experiences breakdown, a near division by zero which may hinder or preclude convergence. In this paper we present some theoretical results on the nature and likelihood of the phenomenon of breakdown. We also define several new algorithms that substantially mitigate the problem of breakdown. Numerical comparisons of the new algorithms and the standard algorithms are given.

[1]  Hlawka Theory of the integral , 1939 .

[2]  C. Lanczos An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .

[3]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[4]  R. T. Gregory,et al.  On Lanczos’ Algorithm for Tridiagonalizing Matrices , 1961 .

[5]  Alston S. Householder,et al.  The Theory of Matrices in Numerical Analysis , 1964 .

[6]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[7]  W. Rudin Real and complex analysis , 1968 .

[8]  Tetsuro Yamamoto On Lanczos' algorithm for tri-diagonalization , 1968 .

[9]  S. Eisenstat,et al.  The Modified Conjugate Residual Method for Partial Differential Equations. , 1977 .

[10]  J. Meijerink,et al.  An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .

[11]  I. Gustafsson Stability and rate of convergence of modified incomplete Cholesky factorization methods , 1979 .

[12]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[13]  Y. Saad The Lanczos Biorthogonalization Algorithm and Other Oblique Projection Methods for Solving Large Unsymmetric Systems , 1982 .

[14]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[15]  D. Taylor Analysis of the Look Ahead Lanczos Algorithm. , 1982 .

[16]  Kang C. Jea,et al.  On the simplification of generalized conjugate-gradient methods for nonsymmetrizable linear systems , 1983 .

[17]  Zhishun A. Liu,et al.  A Look Ahead Lanczos Algorithm for Unsymmetric Matrices , 1985 .

[18]  Y. Saad,et al.  Conjugate gradient-like algorithms for solving nonsymmetric linear systems , 1985 .

[19]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[20]  J. Cullum,et al.  A Practical Procedure for Computing Eigenvalues of Large Sparse Nonsymmetric Matrices , 1986 .

[21]  W. Joubert,et al.  Necessary and sufficient conditions for the simplification of generalized conjugate-gradient algorithms , 1987 .

[22]  H. Langtangen,et al.  A numerical comparison of conjugate gradient‐like methods , 1988 .

[23]  P. Sonneveld CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .

[24]  A. Greenbaum Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences , 1989 .

[25]  J. Cullum,et al.  A generalized nonsymmetric Lanczos procedure , 1989 .

[26]  W. Joubert,et al.  Iterative methods for nonsymmetric linear systems , 1990 .

[27]  W. Joubert Generalized conjugate gradient and Lanczos methods for the solution of nonsymmetric systems of linear equations , 1990 .

[28]  T. Manteuffel,et al.  A taxonomy for conjugate gradient methods , 1990 .

[29]  M. Gutknecht The Unsymmetric Lanczos Algorithms And Their Relations To Pad ' E Approximation, Continued Fractions , 1990 .

[30]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[31]  Beresford N. Parlett,et al.  Reduction to Tridiagonal Form and Minimal Realizations , 1992, SIAM J. Matrix Anal. Appl..

[32]  Roland W. Freund,et al.  Conjugate Gradient-Type Methods for Linear Systems with Complex Symmetric Coefficient Matrices , 1992, SIAM J. Sci. Comput..

[33]  Anthony T. Chronopoulos,et al.  An efficient nonsymmetric Lanczos method on parallel vector computers , 1992 .

[34]  Roland W. Freund,et al.  An Implementation of the Look-Ahead Lanczos Algorithm for Non-Hermitian Matrices , 1993, SIAM J. Sci. Comput..

[35]  M. Gutknecht A Completed Theory of the Unsymmetric Lanczos Process and Related Algorithms. Part II , 1994, SIAM J. Matrix Anal. Appl..