New Algorithm for Medial Axis Transform of Plane Domain

Abstract In this paper, we present a new approximate algorithm for medial axis transform of a plane domain. The underlying philosophy of our approach is the localization idea based on the Domain Decomposition Lemma, which enables us to break up the complicated domain into smaller and simpler pieces. We then develop tree data structure and various operations on it to keep track of the information produced by the domain decomposition procedure. This strategy enables us to isolate various important points such as branch points and terminal points. Because our data structure guarantees the existence of such important points—in fact, our data structure is devised with this in mind—we can zoom in on those points. This makes our algorithm efficient. Our algorithm is a “from within” approach, whereas traditional methods use a “from-the-boundary” approach. This “from within” nature of our algorithm and the localization scheme help mitigate various instability phenomena, thereby making our algorithm reasonably robust.

[1]  D. T. Lee,et al.  Generalization of Voronoi Diagrams in the Plane , 1981, SIAM J. Comput..

[2]  D. T. Lee,et al.  Medial Axis Transformation of a Planar Shape , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  G. L. Dirichlet Über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. , 1850 .

[4]  P. J. Vermeer Medial axis transform to boundary representation conversion , 1994 .

[5]  Otfried Cheong,et al.  The Voronoi Diagram of Curved Objects , 1995, SCG '95.

[6]  Nicholas M. Patrikalakis,et al.  Differential and Topological Properties of Medial Axis Transforms , 1996, CVGIP Graph. Model. Image Process..

[7]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[8]  Franz-Erich Wolter Cut Locus and Medial Axis in Global Shape Interrogation and Representation , 1995 .

[9]  Debasish Dutta,et al.  On the Skeleton of Simple CSG Objects , 1993 .

[10]  Linda G. Shapiro,et al.  Computer and Robot Vision , 1991 .

[11]  Jin J. Chou Voronoi diagrams for planar shapes , 1995, IEEE Computer Graphics and Applications.

[12]  Nicholas M. Patrikalakis,et al.  Computation of the Medial Axis Transform of 3-D polyhedra , 1995, Symposium on Solid Modeling and Applications.

[13]  Hwan Pyo Moon,et al.  MATHEMATICAL THEORY OF MEDIAL AXIS TRANSFORM , 1997 .

[14]  Vijay Srinivasan,et al.  Voronoi Diagram for Multiply-Connected Polygonal Domains I: Algorithm , 1987, IBM J. Res. Dev..

[15]  Nicholas M. Patrikalakis,et al.  An Algorithm for the Medial Axis Transform of 3D Polyhedral Solids , 1996, IEEE Trans. Vis. Comput. Graph..

[16]  Martin Held,et al.  On the Computational Geometry of Pocket Machining , 1991, Lecture Notes in Computer Science.

[17]  Christoph M. Hoffmann,et al.  How to Construct the Skeleton of CSG Objects , 1990 .

[18]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .