Role of renal TRP channels in physiology and pathology

[1]  T. Gudermann,et al.  Podocyte Purinergic P2X4 Channels Are Mechanotransducers That Mediate Cytoskeletal Disorganization. , 2016, Journal of the American Society of Nephrology : JASN.

[2]  J. Genzen,et al.  Regulation of Mg2+ Reabsorption and Transient Receptor Potential Melastatin Type 6 Activity by cAMP Signaling. , 2016, Journal of the American Society of Nephrology : JASN.

[3]  M. Chonchol,et al.  Renal control of calcium, phosphate, and magnesium homeostasis. , 2015, Clinical journal of the American Society of Nephrology : CJASN.

[4]  Chenlanlan,et al.  Losartan treating podocyte injury induced by Ang II via downregulation of TRPC6 in podocytes , 2015, Journal of the renin-angiotensin-aldosterone system : JRAAS.

[5]  A. Subramanya,et al.  Distal convoluted tubule. , 2014, Clinical journal of the American Society of Nephrology : CJASN.

[6]  D. Mount Thick ascending limb of the loop of Henle. , 2014, Clinical journal of the American Society of Nephrology : CJASN.

[7]  M. Wolf,et al.  Klotho Up-regulates Renal Calcium Channel Transient Receptor Potential Vanilloid 5 (TRPV5) by Intra- and Extracellular N-glycosylation-dependent Mechanisms* , 2014, The Journal of Biological Chemistry.

[8]  N. Curthoys,et al.  Proximal tubule function and response to acidosis. , 2014, Clinical journal of the American Society of Nephrology : CJASN.

[9]  L. Dworkin,et al.  The glomerulus: the sphere of influence. , 2014, Clinical journal of the American Society of Nephrology : CJASN.

[10]  M. Tepel,et al.  High glucose modifies transient receptor potential canonical type 6 channels via increased oxidative stress and syndecan-4 in human podocytes. , 2014, Biochemical and biophysical research communications.

[11]  J. Wetzels,et al.  Glucose specifically regulates TRPC6 expression in the podocyte in an AngII-dependent manner. , 2014, The American journal of pathology.

[12]  J. Hoenderop,et al.  β1-Adrenergic Receptor Signaling Activates the Epithelial Calcium Channel, Transient Receptor Potential Vanilloid Type 5 (TRPV5), via the Protein Kinase A Pathway* , 2014, The Journal of Biological Chemistry.

[13]  S. Dryer,et al.  ATP acting through P2Y receptors causes activation of podocyte TRPC6 channels: role of podocin and reactive oxygen species. , 2014, American journal of physiology. Renal physiology.

[14]  O. Pochynyuk,et al.  Emerging Role of the Calcium-Activated, Small Conductance, SK3 K+ Channel in Distal Tubule Function: Regulation by TRPV4 , 2014, PloS one.

[15]  S. Dryer,et al.  Angiotensin II Activation of TRPC6 Channels in Rat Podocytes Requires Generation of Reactive Oxygen Species , 2014, Journal of cellular physiology.

[16]  L. Birnbaumer,et al.  Angiotensin II has acute effects on TRPC6 channels in podocytes of freshly isolated glomeruli , 2014, Kidney international.

[17]  Craig W Lindsley,et al.  Inhibition of the TRPC5 ion channel protects the kidney filter. , 2013, The Journal of clinical investigation.

[18]  Chun Zhang,et al.  Role of NADPH Oxidase-Mediated Reactive Oxygen Species in Podocyte Injury , 2013, BioMed research international.

[19]  S. Dryer,et al.  Transient Receptor Potential Channel 6 (TRPC6) Protects Podocytes during Complement-mediated Glomerular Disease* , 2013, The Journal of Biological Chemistry.

[20]  T. Benzing,et al.  NOX2 interacts with podocyte TRPC6 channels and contributes to their activation by diacylglycerol: essential role of podocin in formation of this complex. , 2013, American journal of physiology. Cell physiology.

[21]  B. Dworniczak,et al.  New TRPM6 missense mutations linked to hypomagnesemia with secondary hypocalcemia , 2013, European Journal of Human Genetics.

[22]  T. Benzing,et al.  Opposing effects of podocin on the gating of podocyte TRPC6 channels evoked by membrane stretch or diacylglycerol. , 2013, American journal of physiology. Cell physiology.

[23]  O. Pochynyuk,et al.  Discrete Control of TRPV4 Channel Function in the Distal Nephron by Protein Kinases A and C* , 2013, The Journal of Biological Chemistry.

[24]  O. Pochynyuk,et al.  TRPV4 dysfunction promotes renal cystogenesis in autosomal recessive polycystic kidney disease. , 2013, Journal of the American Society of Nephrology : JASN.

[25]  Dennis Brown,et al.  High Resolution Helium Ion Scanning Microscopy of the Rat Kidney , 2013, PloS one.

[26]  J. Bogers,et al.  The TRPM6/EGF Pathway Is Downregulated in a Rat Model of Cisplatin Nephrotoxicity , 2013, PloS one.

[27]  O. Pochynyuk,et al.  Erratum: Function of transient receptor potential cation channel subfamily V member 4 (TRPV4) as a mechanical transducer in flow-sensitive segments of renal collecting duct system (Journal of Biological Chemistry (2012) 287, (8782-8791) doi:10.1074/jbc.A111.308411) , 2012 .

[28]  M. Zou,et al.  Clinical and genetic analysis of patients with vitamin D‐dependent rickets type 1A , 2012, Clinical endocrinology.

[29]  K. Endlich,et al.  The challenge and response of podocytes to glomerular hypertension. , 2012, Seminars in nephrology.

[30]  Yu Huang,et al.  Protein kinase G inhibits flow-induced Ca2+ entry into collecting duct cells. , 2012, Journal of the American Society of Nephrology : JASN.

[31]  S. Gallati,et al.  Loss of insulin-induced activation of TRPM6 magnesium channels results in impaired glucose tolerance during pregnancy , 2012, Proceedings of the National Academy of Sciences.

[32]  A. Staruschenko Regulation of transport in the connecting tubule and cortical collecting duct. , 2012, Comprehensive Physiology.

[33]  R. O'neil,et al.  Hypotonicity-induced TRPV4 function in renal collecting duct cells: modulation by progressive cross-talk with Ca2+-activated K+ channels. , 2012, Cell calcium.

[34]  O. Pochynyuk,et al.  Function of Transient Receptor Potential Cation Channel Subfamily V Member 4 (TRPV4) as a Mechanical Transducer in Flow-sensitive Segments of Renal Collecting Duct System* , 2012, The Journal of Biological Chemistry.

[35]  P. Mundel,et al.  Balancing calcium signals through TRPC5 and TRPC6 in podocytes. , 2011, Journal of the American Society of Nephrology : JASN.

[36]  A. Boninsegna,et al.  Dietary Mg2+ regulates the epithelial Mg2+ channel TRPM6 in rat mammary tissue. , 2011, Magnesium Research.

[37]  R. D. de Boer,et al.  Angiotensin II contributes to podocyte injury by increasing TRPC6 expression via an NFAT-mediated positive feedback signaling pathway. , 2011, The American journal of pathology.

[38]  A. Fornoni,et al.  Podocytopathy in diabetes: a metabolic and endocrine disorder. , 2011, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[39]  O. Pochynyuk,et al.  Purinergic Activation of Ca2+-Permeable TRPV4 Channels Is Essential for Mechano-Sensitivity in the Aldosterone-Sensitive Distal Nephron , 2011, PloS one.

[40]  S. Hattori,et al.  Tyrosine phosphorylation–dependent activation of TRPC6 regulated by PLC-γ1 and nephrin: effect of mutations associated with focal segmental glomerulosclerosis , 2011, Molecular biology of the cell.

[41]  E. Finch,et al.  TRPC6 enhances angiotensin II-induced albuminuria. , 2011, Journal of the American Society of Nephrology : JASN.

[42]  Jing Miao,et al.  Over-expressing transient receptor potential cation channel 6 in podocytes induces cytoskeleton rearrangement through increases of intracellular Ca2+ and RhoA activation , 2011, Experimental biology and medicine.

[43]  S. Weinbaum,et al.  Mechanotransduction in the renal tubule. , 2010, American journal of physiology. Renal physiology.

[44]  J. Peti-Peterdi,et al.  A high-powered view of the filtration barrier. , 2010, Journal of the American Society of Nephrology : JASN.

[45]  S. Dryer,et al.  TRPC6 channels and their binding partners in podocytes: role in glomerular filtration and pathophysiology. , 2010, American journal of physiology. Renal physiology.

[46]  Juan I. Young,et al.  Podocyte-Specific Overexpression of Wild Type or Mutant Trpc6 in Mice Is Sufficient to Cause Glomerular Disease , 2010, PloS one.

[47]  J. Hoenderop,et al.  Transient Receptor Potential Melastatin 6 Knockout Mice Are Lethal whereas Heterozygous Deletion Results in Mild Hypomagnesemia , 2019 .

[48]  Andrew P. Stewart,et al.  Atomic force microscopy reveals the alternating subunit arrangement of the TRPP2-TRPV4 heterotetramer. , 2010, Biophysical journal.

[49]  P. Mundel,et al.  Proteinuria: an enzymatic disease of the podocyte? , 2010, Kidney international.

[50]  G. Germino,et al.  Molecular advances in autosomal dominant polycystic kidney disease. , 2010, Advances in chronic kidney disease.

[51]  F. Hildebrandt,et al.  A Novel TRPC6 Mutation That Causes Childhood FSGS , 2009, PloS one.

[52]  Hanka Venselaar,et al.  Functional Analysis of the Kv1.1 N255D Mutation Associated with Autosomal Dominant Hypomagnesemia* , 2009, The Journal of Biological Chemistry.

[53]  H. Praetorius,et al.  Released nucleotides amplify the cilium‐dependent, flow‐induced [Ca2+]i response in MDCK cells , 2009, Acta physiologica.

[54]  J. Hoenderop,et al.  Klotho prevents renal calcium loss. , 2009, Journal of the American Society of Nephrology : JASN.

[55]  Jie Ding,et al.  RPC6 Up-Regulation in Ang II-Induced Podocyte Apoptosis Might Result from ERK Activation and NF-κB Translocation , 2009, Experimental biology and medicine.

[56]  J. Hoenderop,et al.  The role of transient receptor potential channels in kidney disease , 2009, Nature Reviews Nephrology.

[57]  M. Langeslag,et al.  Parathyroid hormone activates TRPV5 via PKA-dependent phosphorylation. , 2009, Journal of the American Society of Nephrology : JASN.

[58]  K. Willecke,et al.  Connexin 30 deficiency impairs renal tubular ATP release and pressure natriuresis. , 2009, Journal of the American Society of Nephrology : JASN.

[59]  E. Isacoff,et al.  Structural and molecular basis of the assembly of the TRPP2/PKD1 complex , 2009, Proceedings of the National Academy of Sciences.

[60]  J. D. Holtzclaw,et al.  Hypertension of Kcnmb1−/− is linked to deficient K secretion and aldosteronism , 2009, Proceedings of the National Academy of Sciences.

[61]  A. Evan,et al.  Glomerular permeability to macromolecules in the Necturus kidney. , 2009, American journal of physiology. Renal physiology.

[62]  Angela Wandinger-Ness,et al.  Attenuated, flow-induced ATP release contributes to absence of flow-sensitive, purinergic Cai2+ signaling in human ADPKD cyst epithelial cells. , 2009, American journal of physiology. Renal physiology.

[63]  J. Hoenderop,et al.  Regulation of the Epithelial Mg2+ Channel TRPM6 by Estrogen and the Associated Repressor Protein of Estrogen Receptor Activity (REA)* , 2009, Journal of Biological Chemistry.

[64]  Murim Choi,et al.  Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10 , 2009, Proceedings of the National Academy of Sciences.

[65]  N. Knoers,et al.  A missense mutation in the Kv1.1 voltage-gated potassium channel-encoding gene KCNA1 is linked to human autosomal dominant hypomagnesemia. , 2009, The Journal of clinical investigation.

[66]  Hyo Sang Kim,et al.  Effects of Thiazide on the Expression of TRPV5, Calbindin-D28K, and Sodium Transporters in Hypercalciuric Rats , 2009, Journal of Korean medical science.

[67]  A. Donovan,et al.  Deletion of Trpm7 Disrupts Embryonic Development and Thymopoiesis Without Altering Mg2+ Homeostasis , 2008, Science.

[68]  R. Nitschke,et al.  TRPP2 and TRPV4 form a polymodal sensory channel complex , 2008, The Journal of cell biology.

[69]  H. Venselaar,et al.  Role of the α-Kinase Domain in Transient Receptor Potential Melastatin 6 Channel and Regulation by Intracellular ATP* , 2008, Journal of Biological Chemistry.

[70]  S. Shankland,et al.  Proteinuria in diabetic kidney disease: a mechanistic viewpoint. , 2008, Kidney international.

[71]  A. Fleig,et al.  SLC41A1 Is a Novel Mammalian Mg2+ Carrier* , 2008, Journal of Biological Chemistry.

[72]  S. Cha,et al.  Protein kinase C inhibits caveolae-mediated endocytosis of TRPV5. , 2008, American journal of physiology. Renal physiology.

[73]  E. Schwiebert,et al.  Purinergic signaling in the lumen of a normal nephron and in remodeled PKD encapsulated cysts , 2008, Purinergic Signalling.

[74]  S. Shankland,et al.  Activation of a local renin angiotensin system in podocytes by glucose. , 2008, American journal of physiology. Renal physiology.

[75]  G. Quamme Recent developments in intestinal magnesium absorption , 2008, Current opinion in gastroenterology.

[76]  H. Praetorius,et al.  Slow spontaneous [Ca2+]i oscillations reflect nucleotide release from renal epithelia , 2008, Pflügers Archiv - European Journal of Physiology.

[77]  B. Yoder,et al.  Loss of apical monocilia on collecting duct principal cells impairs ATP secretion across the apical cell surface and ATP-dependent and flow-induced calcium signals , 2007, Purinergic Signalling.

[78]  Stefan Heller,et al.  Dual role of the TRPV4 channel as a sensor of flow and osmolality in renal epithelial cells. , 2007, American journal of physiology. Renal physiology.

[79]  Jian-xing Ma,et al.  Downregulation of TRPC6 protein expression by high glucose, a possible mechanism for the impaired Ca2+ signaling in glomerular mesangial cells in diabetes. , 2007, AJP - Renal Physiology.

[80]  V. Vallon,et al.  The role of the BK channel in potassium homeostasis and flow-induced renal potassium excretion. , 2007, Kidney international.

[81]  T. Gudermann,et al.  TRPM6 and TRPM7--Gatekeepers of human magnesium metabolism. , 2007, Biochimica et biophysica acta.

[82]  Hong Guo,et al.  PKHD1 gene silencing may cause cell abnormal proliferation through modulation of intracellular calcium in autosomal recessive polycystic kidney disease. , 2007, Journal of biochemistry and molecular biology.

[83]  J. Miller,et al.  Comprehensive molecular diagnostics in autosomal dominant polycystic kidney disease. , 2007, Journal of the American Society of Nephrology : JASN.

[84]  B. Schermer,et al.  Podocin Organizes Ion Channel-Lipid Supercomplexes: Implications for Mechanosensation at the Slit Diaphragm , 2007, Nephron Experimental Nephrology.

[85]  G. Kantarci,et al.  Klotho: an antiaging protein involved in mineral and vitamin D metabolism. , 2007, Kidney international.

[86]  Wen Liu,et al.  Ca2+ dependence of flow-stimulated K secretion in the mammalian cortical collecting duct. , 2007, American journal of physiology. Renal physiology.

[87]  J. Kopp,et al.  Genetics of focal segmental glomerulosclerosis , 2007, Pediatric Nephrology.

[88]  Jing Zhou,et al.  Fibrocystin/Polyductin, Found in the Same Protein Complex with Polycystin-2, Regulates Calcium Responses in Kidney Epithelia , 2007, Molecular and Cellular Biology.

[89]  A. Fujimura,et al.  TRPV4 as a flow sensor in flow-dependent K+ secretion from the cortical collecting duct. , 2007, American journal of physiology. Renal physiology.

[90]  M. Hediger,et al.  Marked Disturbance of Calcium Homeostasis in Mice With Targeted Disruption of the Trpv6 Calcium Channel Gene , 2006, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[91]  M. Chalfie,et al.  Podocin and MEC-2 bind cholesterol to regulate the activity of associated ion channels , 2006, Proceedings of the National Academy of Sciences.

[92]  J. Soboloff,et al.  A common mechanism underlies stretch activation and receptor activation of TRPC6 channels , 2006, Proceedings of the National Academy of Sciences.

[93]  K. Endlich,et al.  Podocytes are sensitive to fluid shear stress in vitro. , 2006, American journal of physiology. Renal physiology.

[94]  Wen Liu,et al.  Regulation of cation transport in the distal nephron by mechanical forces. , 2006, American journal of physiology. Renal physiology.

[95]  D. Clapham,et al.  Calbindin‐D28K dynamically controls TRPV5‐mediated Ca2+ transport , 2006, The EMBO journal.

[96]  L. Guay-Woodford,et al.  Loss of primary cilia results in deregulated and unabated apical calcium entry in ARPKD collecting duct cells. , 2006, American journal of physiology. Renal physiology.

[97]  M. Estacion,et al.  Identification and localization of TRPC channels in the rat kidney. , 2006, American journal of physiology. Renal physiology.

[98]  Lixia Yue,et al.  Functional Characterization of Homo- and Heteromeric Channel Kinases TRPM6 and TRPM7 , 2006, The Journal of general physiology.

[99]  M. Estacion,et al.  Human TRPC6 expressed in HEK 293 cells forms non‐selective cation channels with limited Ca2+ permeability , 2006, The Journal of physiology.

[100]  Jing Zhou,et al.  Loss of polycystin-1 in human cyst-lining epithelia leads to ciliary dysfunction. , 2006, Journal of the American Society of Nephrology : JASN.

[101]  L. P. Van den Heuvel,et al.  The epithelial Mg2+ channel transient receptor potential melastatin 6 is regulated by dietary Mg2+ content and estrogens. , 2006, Journal of the American Society of Nephrology : JASN.

[102]  J. Hoenderop,et al.  Acid-base status determines the renal expression of Ca2+ and Mg2+ transport proteins. , 2006, Journal of the American Society of Nephrology : JASN.

[103]  J. Hoenderop,et al.  Coordinated control of renal Ca2+ handling. , 2006, Kidney international.

[104]  D. Clapham,et al.  TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function , 2005, Nature Genetics.

[105]  D. Wallace,et al.  Calcium restores a normal proliferation phenotype in human polycystic kidney disease epithelial cells. , 2005, Journal of the American Society of Nephrology : JASN.

[106]  A. Perraud,et al.  The Channel Kinases TRPM6 and TRPM7 Are Functionally Nonredundant* , 2005, Journal of Biological Chemistry.

[107]  J. Hoenderop,et al.  The ß-Glucuronidase Klotho Hydrolyzes and Activates the TRPV5 Channel , 2005, Science.

[108]  L. Saltz,et al.  Cetuximab therapy and symptomatic hypomagnesemia. , 2005, Journal of the National Cancer Institute.

[109]  M. Pericak-Vance,et al.  A Mutation in the TRPC6 Cation Channel Causes Familial Focal Segmental Glomerulosclerosis , 2005, Science.

[110]  G. Quamme,et al.  Functional characterization of human SLC41A1, a Mg2+ transporter with similarity to prokaryotic MgtE Mg2+ transporters. , 2005, Physiological genomics.

[111]  S. Harper,et al.  Three-dimensional reconstruction of glomeruli by electron microscopy reveals a distinct restrictive urinary subpodocyte space. , 2005, Journal of the American Society of Nephrology : JASN.

[112]  Y. Mori,et al.  Multiple regulation by calcium of murine homologues of transient receptor potential proteins TRPC6 and TRPC7 expressed in HEK293 cells , 2004, The Journal of physiology.

[113]  L. Lai,et al.  Effect of thiazide on renal gene expression of apical calcium channels and calbindins. , 2004, American journal of physiology. Renal physiology.

[114]  K. Mikoshiba,et al.  Regulation of TRPC6 Channel Activity by Tyrosine Phosphorylation* , 2004, Journal of Biological Chemistry.

[115]  T. Gudermann,et al.  Insights into the molecular nature of magnesium homeostasis. , 2004, American journal of physiology. Renal physiology.

[116]  S. Somlo,et al.  Effective treatment of an orthologous model of autosomal dominant polycystic kidney disease , 2004, Nature Medicine.

[117]  B. Nilius,et al.  TRPM6 Forms the Mg2+ Influx Channel Involved in Intestinal and Renal Mg2+ Absorption* , 2004, Journal of Biological Chemistry.

[118]  F. Kersten,et al.  Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5. , 2003, The Journal of clinical investigation.

[119]  T. Gudermann,et al.  N-Linked Protein Glycosylation Is a Major Determinant for Basal TRPC3 and TRPC6 Channel Activity* , 2003, Journal of Biological Chemistry.

[120]  J. Hoenderop,et al.  Localization and regulation of the epithelial Ca2+ channel TRPV6 in the kidney. , 2003, Journal of the American Society of Nephrology.

[121]  Sheldon Weinbaum,et al.  Effect of flow and stretch on the [Ca2+]i response of principal and intercalated cells in cortical collecting duct. , 2003, American journal of physiology. Renal physiology.

[122]  N. LaRusso,et al.  Defects in cholangiocyte fibrocystin expression and ciliary structure in the PCK rat. , 2003, Gastroenterology.

[123]  J. Friedman,et al.  Abnormal osmotic regulation in trpv4-/- mice , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[124]  N. LaRusso,et al.  Cellular and subcellular localization of the ARPKD protein; fibrocystin is expressed on primary cilia. , 2003, Human molecular genetics.

[125]  M. Hediger,et al.  Calcium transporter 1 and epithelial calcium channel messenger ribonucleic acid are differentially regulated by 1,25 dihydroxyvitamin D3 in the intestine and kidney of mice. , 2003, Endocrinology.

[126]  J. Hoenderop,et al.  Thiazide-induced hypocalciuria is accompanied by a decreased expression of Ca2+ transport proteins in kidney. , 2003, Kidney international.

[127]  Jing Zhou,et al.  Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells , 2003, Nature Genetics.

[128]  Raj Gaurav Rohatgi,et al.  Effects of luminal flow and nucleotides on [Ca(2+)](i) in rabbit cortical collecting duct. , 2002, American journal of physiology. Renal physiology.

[129]  C. Lingle,et al.  Multiple regulatory sites in large-conductance calcium-activated potassium channels , 2002, Nature.

[130]  E. Haddad,et al.  Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family , 2002, Nature Genetics.

[131]  V. Sheffield,et al.  Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia , 2002, Nature Genetics.

[132]  Vicente E. Torres,et al.  The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein , 2002, Nature Genetics.

[133]  T. Benzing,et al.  Interaction with Podocin Facilitates Nephrin Signaling* , 2001, The Journal of Biological Chemistry.

[134]  A. Fogo,et al.  Role of angiotensin II in glomerular injury. , 2001, Seminars in nephrology.

[135]  P. Carmeliet,et al.  Duodenal calcium absorption in vitamin D receptor–knockout mice: Functional and molecular aspects , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[136]  Y. H. Kim,et al.  Podocyte depletion and glomerulosclerosis have a direct relationship in the PAN-treated rat. , 2001, Kidney international.

[137]  L. Satlin,et al.  Flow-dependent K+ secretion in the cortical collecting duct is mediated by a maxi-K channel. , 2001, American journal of physiology. Renal physiology.

[138]  D. Clapham,et al.  CaT1 manifests the pore properties of the calcium-release-activated calcium channel , 2001, Nature.

[139]  G. Firestone,et al.  Aldosterone induces rapid apical translocation of ENaC in early portion of renal collecting system: possible role of SGK. , 2001, American journal of physiology. Renal physiology.

[140]  D. Uttenweiler,et al.  Podocytes respond to mechanical stress in vitro. , 2001, Journal of the American Society of Nephrology : JASN.

[141]  Ali G. Gharavi,et al.  Molecular Mechanisms of Human Hypertension , 2001, Cell.

[142]  R. Vennekens,et al.  Permeation and Gating Properties of the Novel Epithelial Ca2+ Channel* , 2000, The Journal of Biological Chemistry.

[143]  J. Hoenderop,et al.  The epithelial calcium channel, ECaC, is activated by hyperpolarization and regulated by cytosolic calcium. , 1999, Biochemical and biophysical research communications.

[144]  S. V. D. van de Graaf,et al.  Molecular Identification of the Apical Ca2+Channel in 1,25-Dihydroxyvitamin D3-responsive Epithelia* , 1999, The Journal of Biological Chemistry.

[145]  P. Malloy,et al.  Vitamin D resistance. , 1999, The American journal of medicine.

[146]  T. Ishii,et al.  Mechanism of calcium gating in small-conductance calcium-activated potassium channels , 1998, Nature.

[147]  M. Imai,et al.  Flow-Dependent Activation of Maxi K+ Channels in Apical Membrane of Rabbit Connecting Tubule , 1998, The Journal of Membrane Biology.

[148]  A. Truttmann,et al.  Free Circulating Magnesium and Renal Magnesium Handling during Acute Metabolic Acidosis in Humans , 1998, American Journal of Nephrology.

[149]  Tadashi Kaname,et al.  Mutation of the mouse klotho gene leads to a syndrome resembling ageing , 1997, Nature.

[150]  E. Brown,et al.  The scent of an ion: calcium‐sensing and its roles in health and disease , 1996, Current opinion in nephrology and hypertension.

[151]  R. Kumar,et al.  Immunolocalization of calcitriol receptor, 24-hydroxylase cytochrome P-450, and calbindin D28k in human kidney. , 1994, The American journal of physiology.

[152]  K. Zerres,et al.  Autosomal recessive polycystic kidney disease , 1992, The clinical investigator.

[153]  R. Hogg,et al.  Renal cystic disease of infancy: results of histochemical studies , 1989, Pediatric Nephrology.

[154]  Verani Rr,et al.  Histogenesis of the renal cysts in adult (autosomal dominant) polycystic kidney disease: a histochemical study. , 1988 .

[155]  G. Quamme,et al.  Effects of acid-base disturbances on renal handling of magnesium in the dog. , 1986, Clinical science.

[156]  E. J. Lennon,et al.  A comparison of the effects of glucose ingestion and NH4Cl acidosis on urinary calcium and magnesium excretion in man. , 1970, The Journal of clinical investigation.

[157]  O. Pochynyuk,et al.  Ca2+ Imaging as a tool to assess TRP channel function in murine distal nephrons. , 2013, Methods in molecular biology.

[158]  R. Ma,et al.  Renal protection of in vivo administration of tempol in streptozotocin-induced diabetic rats. , 2012, Journal of pharmacological sciences.

[159]  B. Nilius,et al.  TRP channels. , 2012, Comprehensive Physiology.

[160]  Ji-Bin Peng TRPV5 and TRPV6 in transcellular Ca(2+) transport: regulation, gene duplication, and polymorphisms in African populations. , 2011, Advances in experimental medicine and biology.

[161]  J. Stockman Epilepsy, Ataxia, Sensorineural Deafness, Tubulopathy, and KCNJ10 Mutations , 2011 .

[162]  J. Hoenderop,et al.  EGF increases TRPM6 activity and surface expression. , 2009, Journal of the American Society of Nephrology : JASN.

[163]  V. Vallon P2 receptors in the regulation of renal transport mechanisms. , 2008, American journal of physiology. Renal physiology.

[164]  Marcel,et al.  SLC 41 A 1 is a novel mammalian Mg 2 + carrier 1 SLC 41 A 1 is a novel mammalian Mg 2 + carrier , 2008 .

[165]  S. Dryer,et al.  trafficking to the surface of cultured podocytes , 2008 .

[166]  Wen Liu,et al.  Ca 2 dependence of flow-stimulated K secretion in the mammalian cortical collecting duct , 2007 .

[167]  J. Hoenderop,et al.  Acid-Base Status Determines the Renal Expression of Ca 2 (cid:1) and Mg 2 (cid:1) Transport Proteins , 2006 .

[168]  D. Clapham,et al.  Calbindin-D 28K dynamically controls TRPV5-mediated Ca 2 þ transport , 2006 .

[169]  J. García Rodríguez,et al.  [Polycystic Kidney Disease]. , 2005, Actas urologicas espanolas.

[170]  G. Quamme,et al.  Functional characterization of human SLC 41 A 1 , a Mg 2 transporter with similarity to prokaryotic MgtE Mg 2 transporters , 2005 .

[171]  Kenneth R Spring,et al.  A physiological view of the primary cilium. , 2005, Annual review of physiology.

[172]  K. Spring,et al.  Removal of the MDCK Cell Primary Cilium Abolishes Flow Sensing , 2003, The Journal of Membrane Biology.

[173]  J. Hoenderop,et al.  Hormone-stimulated Ca2+ reabsorption in rabbit kidney cortical collecting system is cAMP-independent and involves a phorbol ester-insensitive PKC isotype. , 1999, Kidney international.

[174]  J. Kaufman,et al.  Potassium transport in the connecting tubule. , 1996, Mineral and electrolyte metabolism.

[175]  S. Kennedy,et al.  Parathyroid hormone stimulation of calcium transport is mediated by dual signaling mechanisms involving protein kinase A and protein kinase C. , 1996, Endocrinology.

[176]  F. Silva,et al.  Histogenesis of the renal cysts in adult (autosomal dominant) polycystic kidney disease: a histochemical study. , 1988, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc.