Electron dynamics in gold and gold–silver alloy nanoparticles: The influence of a nonequilibrium electron distribution and the size dependence of the electron–phonon relaxation

Electron dynamics in gold nanoparticles with an average diameter between 9 and 48 nm have been studied by femtosecond transient absorption spectroscopy. Following the plasmon bleach recovery after low power excitation indicates that a non-Fermi electron distribution thermalizes by electron–electron relaxation on a time scale of 500 fs to a Fermi distribution. This effect is only observed at low excitation power and when the electron distribution is perturbed by mixing with the intraband transitions within the conduction band (i.e., when the excitation wavelength is 630 or 800 nm). However, exciting the interband transitions at 400 nm does not allow following the early electron thermalization process. Electron thermalization with the lattice of the nanoparticle by electron–phonon interactions occurs within 1.7 ps under these conditions, independent of the excitation wavelength. In agreement with the experiments, simulations of the optical response arising from thermalized and nonthermalized electron distri...

[1]  G. Garton,et al.  The color of colloidal gold , 1954 .

[2]  J. Zhang,et al.  Preparation and ultrafast optical characterization of metal and semiconductor colloidal nano-particles , 1997 .

[3]  Sun,et al.  Femtosecond investigation of electron thermalization in gold. , 1993, Physical review. B, Condensed matter.

[4]  C. Kittel Introduction to solid state physics , 1954 .

[5]  M. Aeschlimann,et al.  Femtosecond time-resolved measurement of electron relaxation at metal surfaces , 1995 .

[6]  B. O. Seraphin,et al.  Relativistic Band Calculation and the Optical Properties of Gold , 1971 .

[7]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[8]  Fujimoto,et al.  Femtosecond electronic heat-transport dynamics in thin gold films. , 1987, Physical review letters.

[9]  Arao Nakamura,et al.  Subpicosecond time response of third‐order optical nonlinearity of small copper particles in glass , 1994 .

[10]  M. El-Sayed,et al.  Picosecond Dynamics of Colloidal Gold Nanoparticles , 1996 .

[11]  Z. Wang Elastic and Inelastic Scattering in Electron Diffraction and Imaging , 1995, Springer US.

[12]  G. Hartland,et al.  Spectroscopy and Dynamics of Nanometer-Sized Noble Metal Particles , 1998 .

[13]  Sun,et al.  Femtosecond-tunable measurement of electron thermalization in gold. , 1994, Physical review. B, Condensed matter.

[14]  Zhong Lin Wang Structural Analysis of Self-Assembling Nanocrystal Superlattices , 1998 .

[15]  A. Lagendijk,et al.  Femtosecond spectroscopy of electron-electron and electron-phonon energy relaxation in Ag and Au. , 1995, Physical review. B, Condensed matter.

[16]  H. Petek,et al.  Femtosecond dynamics of hot-electron relaxation in Cu(110) and Cu(100) , 1996 .

[17]  Kazuyuki Hirao,et al.  Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system , 1998 .

[18]  M. Natan,et al.  Electronic Relaxation Dynamics in Coupled Metal Nanoparticles , 1997 .

[19]  Jeffrey Bokor,et al.  Direct measurement of nonequilibrium electron-energy distributions in subpicosecond laser-heated gold films , 1992 .

[20]  G. Ertl,et al.  Dynamics of photoexcited electrons in metals studied with time-resolved two-photon photoemission , 1996 .

[21]  Robert L. Whetten,et al.  Isolation of Smaller Nanocrystal Au Molecules: Robust Quantum Effects in Optical Spectra , 1997 .

[22]  Smith,et al.  Direct measurements of the transport of nonequilibrium electrons in gold films with different crystal structures. , 1993, Physical review. B, Condensed matter.

[23]  G. Hartland,et al.  Ultrafast study of electron–phonon coupling in colloidal gold particles , 1998 .

[24]  G. Papavassiliou Optical properties of small inorganic and organic metal particles , 1979 .

[25]  Kim,et al.  Carrier-carrier scattering in a degenerate electron system: Strong inhibition of scattering near the Fermi edge. , 1992, Physical review letters.

[26]  David J. Smith,et al.  High resolution studies of small particles of gold and silver: II. Single crystals, lamellar twins and polyparticles , 1981 .

[27]  A. Alivisatos Perspectives on the Physical Chemistry of Semiconductor Nanocrystals , 1996 .

[28]  Aeschlimann,et al.  Time-resolved two-photon photoemission from Cu(100): Energy dependence of electron relaxation. , 1994, Physical Review B (Condensed Matter).

[29]  Milton Kerker,et al.  The Scattering of Light and Other Electromagnetic Radiation ~Academic , 1969 .

[30]  Smith,et al.  Femtosecond thermoreflectivity and thermotransmissivity of polycrystalline and single-crystalline gold films. , 1991, Physical review. B, Condensed matter.

[31]  J. Hillier,et al.  A study of the nucleation and growth processes in the synthesis of colloidal gold , 1951 .

[32]  Robert L. Whetten,et al.  Optical Absorption Spectra of Nanocrystal Gold Molecules , 1997 .

[33]  Gary L. Eesley,et al.  Observation of Nonequilibrium Electron Heating in Copper , 1983 .

[34]  H. Schmidt,et al.  Optically Induced Damping Of The Surface Plasmon Resonance In Gold Colloids , 1997, QELS 1997.

[35]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[36]  U. Grassano,et al.  d bands position and width in gold from very low temperature thermomodulation measurements , 1973 .

[37]  Mostafa A. El-Sayed,et al.  Alloy Formation of Gold−Silver Nanoparticles and the Dependence of the Plasmon Absorption on Their Composition , 1999 .

[38]  Fujimoto,et al.  Femtosecond studies of nonequilibrium electronic processes in metals. , 1987, Physical review letters.

[39]  R. Hochstrasser,et al.  Nonlinear spectroscopy and picosecond transient grating study of colloidal gold , 1985 .

[40]  Allen,et al.  Theory of thermal relaxation of electrons in metals. , 1987, Physical review letters.

[41]  Lagendijk,et al.  Effect of a nonthermal electron distribution on the electron-phonon energy relaxation process in noble metals. , 1992, Physical review. B, Condensed matter.

[42]  P. Stadelmann,et al.  Crystallographic structure of small gold particles studied by high-resolution electron microscopy , 1991 .

[43]  D. A. Mantell,et al.  Femtosecond photoemission study of ultrafast electron dynamics on Cu(100) , 1997 .

[44]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[45]  Eesley Generation of nonequilibrium electron and lattice temperatures in copper by picosecond laser pulses. , 1986, Physical review. B, Condensed matter.

[46]  D. Pines,et al.  The theory of quantum liquids , 1968 .

[47]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[48]  J. Zhang,et al.  Femtosecond Electronic Relaxation Dynamics in Metal Nano-Particles: Effects of Surface and Size Confinement , 1996 .

[49]  J. Zhang,et al.  Ultrafast electron dynamics at the liquid–metal interface: Femtosecond studies using surface plasmons in aqueous silver colloid , 1995 .

[50]  J. Zhang,et al.  Direct probe of size-dependent electronic relaxation in single-sized Au and nearly monodisperse Pt colloidal nano-particles , 1997 .

[51]  J. Turkevich,et al.  Colloidal gold. Part I , 1985 .

[52]  M. Aeschlimann,et al.  Lifetime difference of photoexcited electrons between intraband and interband transitions , 1997 .

[53]  Storz,et al.  Electron thermalization in gold. , 1992, Physical review. B, Condensed matter.

[54]  Wright,et al.  Ultrafast nonequilibrium stress generation in gold and silver. , 1994, Physical review. B, Condensed matter.

[55]  Merle,et al.  Electron dynamics in copper metallic nanoparticles probed with femtosecond optical pulses. , 1995, Physical review letters.

[56]  M. El-Sayed,et al.  Electron Dynamics of Passivated Gold Nanocrystals Probed by Subpicosecond Transient Absorption Spectroscopy , 1997 .

[57]  Hani E. Elsayed-Ali,et al.  Observation of surface enhanced multiphoton photoemission from metal surfaces in the short pulse limit , 1995 .