GFP Reconstitution Across Synaptic Partners (GRASP) Defines Cell Contacts and Synapses in Living Nervous Systems

[1]  H. Spencer The structure of the nervous system. , 1870 .

[2]  S. Brenner,et al.  The structure of the ventral nerve cord of Caenorhabditis elegans. , 1976, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[3]  M. Schwab,et al.  Electron microscopic evidence for a transsynaptic migration of tetanus toxin in spinal cord motoneurons: An autoradiographic and morphometric study , 1976, Brain Research.

[4]  H J Ralston,et al.  Light and electron microscopic evidence of transneuronal labeling with WGA‐HRP to trace somatosensory pathways to the thalamus , 1985, The Journal of comparative neurology.

[5]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[6]  R. Porter,et al.  DNA transformation. , 1988, Methods in enzymology.

[7]  N. Munakata [Genetics of Caenorhabditis elegans]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[8]  J. Schwaber,et al.  Neurotropic properties of pseudorabies virus: uptake and transneuronal passage in the rat central nervous system , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  Peter D. Kwong,et al.  Crystal structure of an HIV-binding recombinant fragment of human CD4 , 1990, Nature.

[10]  J. T. Erichsen,et al.  Retrograde, trans-synaptic and transneuronal transport of fragment C of tetanus toxin by sympathetic preganglionic neurons , 1991, Neuroscience.

[11]  B. Boycott,et al.  Functional architecture of the mammalian retina. , 1991, Physiological reviews.

[12]  J. White,et al.  Mutations in the Caenorhabditis elegans unc–4 gene alter the synaptic input to ventral cord motor neurons , 1992, Nature.

[13]  Gary Ruvkun,et al.  C. elegans unc-4 gene encodes a homeodomain protein that determines the pattern of synaptic input to specific motor neurons , 1992, Nature.

[14]  J. Spieth,et al.  Operons in C. elegans: Polycistronic mRNA precursors are processed by trans-splicing of SL2 to downstream coding regions , 1993, Cell.

[15]  Lawrence C. Katz,et al.  Scanning laser photostimulation: a new approach for analyzing brain circuits , 1994, Journal of Neuroscience Methods.

[16]  R. Reid,et al.  Specificity of monosynaptic connections from thalamus to visual cortex , 1995, Nature.

[17]  Andrew Fire,et al.  Chapter 19 DNA Transformation , 1995 .

[18]  Nirav C. Merchant,et al.  Flybrain, an on-line atlas and database of the Drosophila nervous system , 1995, Neuron.

[19]  T. Barnes,et al.  The Groucho-like transcription factor UNC-37 functions with the neural specificity gene unc-4 to govern motor neuron identity in C. elegans. , 1997, Development.

[20]  M. Nonet,et al.  Visualization of synaptic specializations in live C. elegans with synaptic vesicle protein-GFP fusions , 1999, Journal of Neuroscience Methods.

[21]  H. Okano,et al.  A Genetic Approach to Visualization of Multisynaptic Neural Pathways Using Plant Lectin Transgene , 1999, Neuron.

[22]  L. Regan,et al.  Antiparallel Leucine Zipper-Directed Protein Reassembly: Application to the Green Fluorescent Protein , 2000 .

[23]  D. Hall,et al.  Regulation of Neurotransmitter Vesicles by the Homeodomain Protein UNC-4 and Its Transcriptional Corepressor UNC-37/Groucho inCaenorhabditis elegans Cholinergic Motor Neurons , 2001, The Journal of Neuroscience.

[24]  E. Hedgecock,et al.  Hemicentin, a conserved extracellular member of the immunoglobulin superfamily, organizes epithelial and other cell attachments into oriented line-shaped junctions. , 2001, Development.

[25]  Stephen J. Smith,et al.  Knowing a Nascent Synapse When You See It , 2002, Neuron.

[26]  D. Van Vactor,et al.  Drosophila liprin-alpha and the receptor phosphatase Dlar control synapse morphogenesis. , 2002, Neuron.

[27]  P. Brûlet,et al.  Retrograde trans-synaptic transfer of green fluorescent protein allows the genetic mapping of neuronal circuits in transgenic mice , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[28]  David M. Miller,et al.  A Primary Culture System for Functional Analysis of C. elegans Neurons and Muscle Cells , 2002, Neuron.

[29]  W. Taylor,et al.  Direction selectivity in the retina , 2002, Current Opinion in Neurobiology.

[30]  D. V. Vactor,et al.  Drosophila Liprin-α and the Receptor Phosphatase Dlar Control Synapse Morphogenesis , 2002, Neuron.

[31]  D. Combes,et al.  Multiple ace genes encoding acetylcholinesterases of Caenorhabditis elegans have distinct tissue expression , 2003, The European journal of neuroscience.

[32]  Cornelia I. Bargmann,et al.  The Immunoglobulin Superfamily Protein SYG-1 Determines the Location of Specific Synapses in C. elegans , 2003, Cell.

[33]  Mario de Bono,et al.  Inhibition of Caenorhabditis elegans social feeding by FMRFamide-related peptide activation of NPR-1 , 2003, Nature Neuroscience.

[34]  R. Douglas,et al.  A Quantitative Map of the Circuit of Cat Primary Visual Cortex , 2004, The Journal of Neuroscience.

[35]  M. Chalfie,et al.  Combinatorial Marking of Cells and Organelles with Reconstituted Fluorescent Proteins , 2004, Cell.

[36]  Cornelia I Bargmann,et al.  Synaptic Specificity Is Generated by the Synaptic Guidepost Protein SYG-2 and Its Receptor, SYG-1 , 2004, Cell.

[37]  K. Shen,et al.  Molecular mechanisms of target specificity during synapse formation , 2004, Current Opinion in Neurobiology.

[38]  R. Harrington,et al.  The Two Isoforms of the Caenorhabditis elegans Leukocyte-Common Antigen Related Receptor Tyrosine Phosphatase PTP-3 Function Independently in Axon Guidance and Synapse Formation , 2005, The Journal of Neuroscience.

[39]  C. Hoogenraad,et al.  LAR receptor protein tyrosine phosphatases in the development and maintenance of excitatory synapses , 2005, Nature Neuroscience.

[40]  T. Terwilliger,et al.  Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein , 2005, Nature Biotechnology.

[41]  J. Boeke,et al.  GeneDesign: rapid, automated design of multikilobase synthetic genes. , 2006, Genome research.

[42]  Thomas C. Südhof,et al.  Neuroligins Determine Synapse Maturation and Function , 2006, Neuron.

[43]  Kevin L. Briggman,et al.  Towards neural circuit reconstruction with volume electron microscopy techniques , 2006, Current Opinion in Neurobiology.

[44]  Maulik R. Patel,et al.  Hierarchical assembly of presynaptic components in defined C. elegans synapses , 2006, Nature Neuroscience.

[45]  T. Kerppola,et al.  Visualization of molecular interactions by fluorescence complementation , 2006, Nature Reviews Molecular Cell Biology.

[46]  T. Terwilliger,et al.  Engineering and characterization of a superfolder green fluorescent protein , 2006, Nature Biotechnology.

[47]  Ian R. Wickersham,et al.  Monosynaptic Restriction of Transsynaptic Tracing from Single, Genetically Targeted Neurons , 2007, Neuron.

[48]  Daniel A. Colón-Ramos,et al.  Glia Promote Local Synaptogenesis Through UNC-6 (Netrin) Signaling in C. elegans , 2007, Science.

[49]  Allan R. Jones,et al.  Genome-wide atlas of gene expression in the adult mouse brain , 2007, Nature.

[50]  K. Shen,et al.  Wnt Signaling Positions Neuromuscular Connectivity by Inhibiting Synapse Formation in C. elegans , 2007, Cell.

[51]  Ann Marie Craig,et al.  Neurexin–neuroligin signaling in synapse development , 2007, Current Opinion in Neurobiology.