Higher-Order Global Regularity of an Inviscid Voigt-Regularization of the Three-Dimensional Inviscid Resistive Magnetohydrodynamic Equations

We prove existence, uniqueness, and higher-order global regularity of strong solutions to a particular Voigt-regularization of the three-dimensional inviscid resistive magnetohydrodynamic (MHD) equations. Specifically, the coupling of a resistive magnetic field to the Euler-Voigt model is introduced to form an inviscid regularization of the inviscid resistive MHD system. The results hold in both the whole space $${\mathbb{R}^3}$$ and in the context of periodic boundary conditions. Weak solutions for this regularized model are also considered, and proven to exist globally in time, but the question of uniqueness for weak solutions is still open. Furthermore, we show that the solutions of the Voigt regularized system converge, as the regularization parameter $${\alpha \rightarrow 0}$$, to strong solutions of the original inviscid resistive MHD, on the corresponding time interval of existence of the latter. Moreover, we also establish a new criterion for blow-up of solutions to the original MHD system inspired by this Voigt regularization.

[1]  Evelyn Lunasin,et al.  The Navier–Stokes–Voight model for image inpainting , 2009, 0901.4548.

[2]  E. Titi,et al.  Global attractors and determining modes for the 3D Navier-Stokes-Voight equations , 2007, 0705.3972.

[3]  Mario Pulvirenti,et al.  Mathematical Theory of Incompressible Nonviscous Fluids , 1993 .

[4]  R. Showalter Well-Posed Problems for a Partial Differential Equation of Order $2m + 1$ , 1970 .

[5]  Davide Catania,et al.  Global existence for two regularized MHD models in three space-dimension , 2011 .

[6]  LOCAL REGULARITY OF SOLUTIONS OF SOBOLEV- GALPERN PARTIAL DIFFERENTIAL EQUATIONS , 1970 .

[7]  R. A. Wentzell,et al.  Hydrodynamic and Hydromagnetic Stability. By S. CHANDRASEKHAR. Clarendon Press: Oxford University Press, 1961. 652 pp. £5. 5s. , 1962, Journal of Fluid Mechanics.

[8]  R. Showalter The sobolev equation, i , 1975 .

[9]  Edriss S. Titi,et al.  GEVREY REGULARITY FOR NONLINEAR ANALYTIC PARABOLIC EQUATIONS , 1998 .

[10]  Andrew J. Majda,et al.  Vorticity and Incompressible Flow: Index , 2001 .

[11]  E. Titi,et al.  Remark on the Rate of Decay of Higher Order Derivatives for Solutions to the Navier–Stokes Equations in Rn☆ , 2000 .

[12]  Hantaek Bae Navier-Stokes equations , 1992 .

[13]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[14]  G. Burton Sobolev Spaces , 2013 .

[15]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[16]  Darryl D. Holm,et al.  A connection between the Camassa–Holm equations and turbulent flows in channels and pipes , 1999, chao-dyn/9903033.

[17]  Edriss S. Titi,et al.  Gevrey Regularity for Nonlinear Analytic Parabolic Equations on the Sphere , 2000 .

[18]  Akira Ogawa,et al.  Vorticity and Incompressible Flow. Cambridge Texts in Applied Mathematics , 2002 .

[19]  L. Driel-Gesztelyi An Introduction to Magnetohydrodynamics , 2004 .

[20]  Edriss S. Titi,et al.  On the Higher-Order Global Regularity of the Inviscid Voigt-Regularization of Three-Dimensional Hydrodynamic Models , 2009, 0910.3354.

[21]  P. Secchi On the equations of ideal incompressible magneto-hydrodynamics , 1993 .

[22]  Roger Temam,et al.  Navier–Stokes Equations and Nonlinear Functional Analysis: Second Edition , 1995 .

[23]  Roger Temam,et al.  Navier-Stokes Equations and Turbulence by C. Foias , 2001 .

[24]  C. Trenchea,et al.  Large eddy simulation for turbulent magnetohydrodynamic flows , 2011 .

[25]  William Layton,et al.  On a well-posed turbulence model , 2005 .

[26]  Marcel Oliver,et al.  Analyticity of Solutions for a Generalized Euler Equation , 1997 .

[27]  Darryl D. Holm,et al.  The Camassa-Holm equations and turbulence , 1999 .

[28]  Ralph E. Showalter,et al.  Existence and Representation Theorems for a Semilinear Sobolev Equation in Banach Space , 1972 .

[29]  Darryl D. Holm,et al.  Camassa-Holm Equations as a Closure Model for Turbulent Channel and Pipe Flow , 1998, chao-dyn/9804026.

[30]  Darryl D. Holm,et al.  On a Leray–α model of turbulence , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[31]  W. Marsden I and J , 2012 .

[32]  Edriss S. Titi,et al.  Gevrey Regularity for the Attractor of the 3D Navier–Stokes–Voight Equations , 2009, J. Nonlinear Sci..

[33]  I. Kukavica,et al.  On the radius of analyticity of solutions to the three-dimensional Euler equations , 2008 .

[34]  Edward Arthur Milne,et al.  Relativity Gravitation and World-Structure; the International Series of Monographs on Physics , 2022 .

[35]  V. Vicol,et al.  Analyticity and Gevrey-Class Regularity for the Second-Grade Fluid Equations , 2009, 0912.1327.

[36]  Darryl D. Holm,et al.  The Three Dimensional Viscous Camassa–Holm Equations, and Their Relation to the Navier–Stokes Equations and Turbulence Theory , 2001, nlin/0103039.

[37]  J. L. Lions,et al.  Inéquations en thermoélasticité et magnétohydrodynamique , 1972 .

[38]  Alexei Ilyin,et al.  A modified-Leray-α subgrid scale model of turbulence , 2006 .

[39]  R. Showalter,et al.  Implicit Degenerate Evolution Equations and Applications , 1981 .

[40]  Edriss S. Titi,et al.  An inviscid regularization for the surface quasi-geostrophic equation , 2007 .

[41]  Edriss S. Titi,et al.  On the statistical properties of the 3D incompressible Navier-Stokes-Voigt model , 2009, 0901.0474.

[42]  Xiaomin Wang A remark on the characterization of the gradient of a distribution , 1993 .

[43]  Darryl D. Holm,et al.  Computational Models of Turbulence: The LANS-α Model and the Role of Global Analysis , 2005 .

[44]  D. Catania Global existence for a regularized magnetohydrodynamic-α model , 2010 .

[45]  E. Titi,et al.  Global Well-posedness for The 2D Boussinesq System Without Heat Diffusion and With Either Anisotropic Viscosity or Inviscid Voigt-$α$ Regularization , 2010 .

[46]  Homogenization of a pseudoparabolic system , 2009 .

[47]  D. Schnack Lectures in Magnetohydrodynamics: With an Appendix on Extended MHD , 2009 .

[48]  E. S. Titi,et al.  Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models , 2006 .

[49]  R. Temam Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .

[50]  Ralph E. Showalter,et al.  Singular and degenerate Cauchy problems , 1976 .

[51]  James C. Robinson Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors , 2001 .

[52]  M. Böhm On NAVIER‐STOKES and KELVIN‐VOIGT Equations in Three Dimensions in Interpolation Spaces , 1992 .

[53]  Edriss S. Titi,et al.  The Navier-Stokes equations on the rotating 2-D sphere: Gevrey regularity and asymptotic degrees of freedom , 1999 .

[54]  R. E. SHOWALTERf NONLINEAR DEGENERATE EVOLUTION EQUATIONS AND PARTIAL DIFFERENTIAL EQUATIONS OF MIXED TYPE * , 2022 .

[55]  R. Temam,et al.  Gevrey class regularity for the solutions of the Navier-Stokes equations , 1989 .

[56]  L. Rodino Linear Partial Differential Operators in Gevrey Spaces , 1993 .

[57]  R. Temam Navier-Stokes Equations , 1977 .

[58]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[59]  Meinhard E. Mayer,et al.  Navier-Stokes Equations and Turbulence , 2008 .

[60]  P. Schmidt On a magnetohydrodynamic problem of Euler type , 1988 .

[61]  E. Titi,et al.  Invariant measures for the 3D Navier-Stokes-Voigt equations and their Navier-Stokes limit , 2009, 0910.1386.

[62]  James C. Robinson Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors , 2001 .

[63]  L. E. Fraenkel,et al.  NAVIER-STOKES EQUATIONS (Chicago Lectures in Mathematics) , 1990 .

[64]  S. Agmon Lectures on Elliptic Boundary Value Problems , 1965 .