Sparsity based feedback design: A new paradigm in opportunistic sensing

We introduce the concept of using compressive sensing techniques to provide feedback in order to control dynamical systems. Compressive sensing algorithms use l1-regularization for reconstructing data from a few measurement samples. These algorithms provide highly efficient reconstruction for sparse data. For data that is not sparse enough, the reconstruction technique produces a bounded error in the estimate. In a dynamical system, such erroneous state-estimation can lead to undesirable effects in the output of the plant. In this work, we present some techniques to overcome the aforementioned restriction. Our efforts fall into two main categories. First, we present some techniques to design feedback systems that sparsify the state in order to perfectly reconstruct it using compressive sensing algorithms. We study the effect of such sparsification schemes on the stability and regulation of the plant. Second, we study the characteristics of dynamical systems that produce sparse states so that compressive sensing techniques can be used for feedback in such scenarios without any additional modification in the feedback loop.

[1]  T. Ulrych,et al.  Autoregressive recovery of the acoustic impedance , 1983 .

[2]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[3]  Ting Sun,et al.  Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..

[4]  Huibert Kwakernaak,et al.  Linear Optimal Control Systems , 1972 .

[5]  Andrei Gabrielov,et al.  Pole Placement by Static Output Feedback for Generic Linear Systems , 2002, SIAM J. Control. Optim..

[6]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[7]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[8]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[9]  J. Tropp,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, Commun. ACM.

[10]  Richard G. Baraniuk,et al.  Democracy in Action: Quantization, Saturation, and Compressive Sensing , 2011 .

[11]  E.J. Candes Compressive Sampling , 2022 .

[12]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[13]  J. Romberg,et al.  Imaging via Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[14]  Guillermo Sapiro,et al.  Sparse Representation for Computer Vision and Pattern Recognition , 2010, Proceedings of the IEEE.

[15]  Joachim Rosenthal,et al.  Generic eigenvalue assignment by memoryless real output feedback , 1995 .

[16]  Patrick Flandrin,et al.  Time-frequency localization from sparsity constraints , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[17]  Vincent D. Blondel,et al.  Survey on the State of Systems and Control , 1995, Eur. J. Control.

[18]  C. Carathéodory Über den variabilitätsbereich der fourier’schen konstanten von positiven harmonischen funktionen , 1911 .

[19]  Tamer Basar,et al.  Existence of dominant solutions in linear output feedback , 1984, The 23rd IEEE Conference on Decision and Control.

[20]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[21]  C. Carathéodory Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen , 1907 .

[22]  Joachim Rosenthal,et al.  Some remarks on real and complex output feedback , 1997 .

[23]  Robert D. Nowak,et al.  Compressed Channel Sensing: A New Approach to Estimating Sparse Multipath Channels , 2010, Proceedings of the IEEE.

[24]  Rä ßä,et al.  Some Remarks on Real and Complex Output Feedback , 2010 .

[25]  David L. Donoho,et al.  Scanning the Technology , 2010, Proc. IEEE.

[26]  Allen Y. Yang,et al.  Distributed Sensor Perception via Sparse Representation , 2010, Proceedings of the IEEE.

[27]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[28]  J. Tsitsiklis,et al.  NP-hardness of some linear control design problems , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[29]  Minyue Fu,et al.  Pole placement via static output feedback is NP-hard , 2004, IEEE Transactions on Automatic Control.

[30]  Katsuhiko Ogata,et al.  Discrete-time control systems , 1987 .

[31]  F. Santosa,et al.  Linear inversion of ban limit reflection seismograms , 1986 .

[32]  Paul Hasler,et al.  Compressive Sensing on a CMOS Separable-Transform Image Sensor , 2010, Proc. IEEE.

[33]  Michael Elad,et al.  Dictionaries for Sparse Representation Modeling , 2010, Proceedings of the IEEE.