Convergence in distribution of products of random matrices

SummaryWe consider a sequence A2, A2, ... of i.i.d. nonnegative matrices of size d × d, and investigate convergence in distribution of the product Mn: =A1 ... An. When d≧2 it is possible for Mn to converge in distribution (without normalization) to a distribution not concentrated on the zero matrix. Several equivalent conditions for this to happen are given. These lead to a fairly general family of examples. These conditions can also be used to determine when the a.s. limit of 1/nlog∥Mn∥ equals the logarithm of the largest eigenvalue of E(A1).

[1]  G. Pólya,et al.  Aufgaben und Lehrsätze aus der Analysis , 1926, Mathematical Gazette.

[2]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[3]  R. Bellman Limit theorems for non-commutative operations. I. , 1954 .

[4]  H. Furstenberg,et al.  Products of Random Matrices , 1960 .

[5]  H. Furstenberg Noncommuting random products , 1963 .

[6]  M Rosenblatt,et al.  Products of independent identically distributed stochastic matrices , 1965 .

[7]  R. Bellman,et al.  A Survey of Matrix Theory and Matrix Inequalities , 1965 .

[8]  Samuel Karlin,et al.  A First Course on Stochastic Processes , 1968 .

[9]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[10]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .

[11]  M. Rosenblatt Markov Processes, Structure and Asymptotic Behavior , 1971 .

[12]  W. Feller,et al.  An Introduction to Probability Theory and Its Applications, Vol. II , 1972, The Mathematical Gazette.

[13]  Paul Louis Hennequin,et al.  Ecole d'Eté de Probabilités de Saint-Flour V-1975 , 1976 .

[14]  Arunava Mukherjea,et al.  Limit Theorems: Stochastic Matrices, Ergodic Markov Chains, and Measures on Semigroups* , 1979 .

[15]  A. Mukherjea A new result on the convergence of nonhomogeneous stochastic chains , 1980 .

[16]  F. Spitzer,et al.  Ergodic theorems for coupled random walks and other systems with locally interacting components , 1981 .

[17]  Thomas M. Liggett,et al.  Generalized potlatch and smoothing processes , 1981 .

[18]  Valerie Isham,et al.  Non‐Negative Matrices and Markov Chains , 1983 .

[19]  F. R. Gantmakher The Theory of Matrices , 1984 .