Optimal Convergence for Discrete Variational Inequalities Modelling Signorini Contact in 2D and 3D without Additional Assumptions on the Unknown Contact Set

The basic $H^1$-finite element error estimate of order $h$ with only $H^2$-regularity on the solution has not been yet established for the simplest two-dimensional Signorini problem approximated by a discrete variational inequality (or the equivalent mixed method) and linear finite elements. To obtain an optimal error bound in this basic case and also when considering more general cases (e.g., the three-dimensional problem, quadratic finite elements), additional assumptions on the exact solution (in particular on the unknown contact set, see [Z. Belhachmi and F. Ben Belgacem, Math. Comp., 72 (2003), pp. 83--104; S. Hueber and B. Wohlmuth, SIAM J. Numer. Anal., 43 (2005), pp. 156--173; B. Wohlmuth, A. Popp, M. Gee, and W. Wall, Comput. Mech. 49 (2012), pp. 735--747] had to be used. In this paper, we consider finite element approximations of the two-dimensional and three-dimensional Signorini problems with linear and quadratic finite elements. In the analysis, we remove all the additional assumptions and pr...

[1]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[2]  Barbara I. Wohlmuth,et al.  An Optimal A Priori Error Estimate for Nonlinear Multibody Contact Problems , 2005, SIAM J. Numer. Anal..

[3]  P. Wriggers Computational contact mechanics , 2012 .

[4]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[5]  G. Burton Sobolev Spaces , 2013 .

[6]  David Kinderlehrer,et al.  Remarks about Signorini's problem in linear elasticity , 1981 .

[7]  W. Han,et al.  Contact problems in elasticity , 2002 .

[8]  J. Andersson Optimal regularity and free boundary regularity for the Signorini problem , 2013 .

[9]  Patrick Hild,et al.  An Improved a Priori Error Analysis for Finite Element Approximations of Signorini's Problem , 2012, SIAM J. Numer. Anal..

[10]  Ricardo H. Nochetto,et al.  Positivity preserving finite element approximation , 2002, Math. Comput..

[11]  F. B. Belgacem,et al.  Quadratic finite elements with non-matching grids for the unilateral boundary contact , 2013 .

[12]  T. Laursen Computational Contact and Impact Mechanics , 2003 .

[13]  Richard S. Falk Approximation of an elliptic boundary value problem with unilateral constraints , 1975 .

[14]  Barbara Wohlmuth,et al.  An abstract framework for a priori estimates for contact problems in 3D with quadratic finite elements , 2012 .

[15]  Jaroslav Haslinger,et al.  Numerical methods for unilateral problems in solid mechanics , 1996 .

[16]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[17]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[18]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[19]  S. Hilbert,et al.  A Mollifier Useful for Approximations in Sobolev Spaces and Some Applications to Approximating Solutions of Differential Equations , 1973 .

[20]  Andreas Rössle,et al.  Corner Singularities and Regularity of Weak Solutions for the Two-Dimensional Lamé Equations on Domains with Angular Corners , 2000 .

[21]  Gilbert Strang,et al.  Approximation in the finite element method , 1972 .

[22]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[23]  J. Andersson Optimal regularity for the Signorini problem and its free boundary , 2013, 1310.2511.

[24]  V. Girault,et al.  A Local Regularization Operator for Triangular and Quadrilateral Finite Elements , 1998 .

[25]  G. Fichera,et al.  Problemi elastostatici con ambigue condizioni al contorno , 2011 .

[26]  Susanne C. Brenner,et al.  SOME NONSTANDARD FINITE ELEMENT ESTIMATES WITH APPLICATIONS TO 3D POISSON AND SIGNORINI PROBLEMS , 2001 .

[27]  W. Ziemer Weakly differentiable functions , 1989 .

[28]  M. Moussaoui,et al.  Régularité des solutions d'un problème mêlé Dirichlet-Signorini dans un domaine polygonal plan , 1992 .

[29]  Faker Ben Belgacem,et al.  Numerical Simulation of Some Variational Inequalities Arisen from Unilateral Contact Problems by the Finite Element Methods , 2000, SIAM J. Numer. Anal..

[30]  J. Oden,et al.  Contact problems in elasticity , 1988 .

[31]  José Barros-Neto,et al.  Problèmes aux limites non homogènes , 1966 .

[32]  Ricardo H. Nochetto,et al.  Residual type a posteriori error estimates for elliptic obstacle problems , 2000, Numerische Mathematik.

[33]  R. S. Falk Error estimates for the approximation of a class of variational inequalities , 1974 .

[34]  Barbara Wohlmuth,et al.  Variationally consistent discretization schemes and numerical algorithms for contact problems* , 2011, Acta Numerica.

[35]  Faker Ben Belgacem,et al.  Quadratic finite element approximation of the Signorini problem , 2003, Math. Comput..

[36]  L. Caffarelli,et al.  Optimal Regularity of Lower-Dimensional Obstacle Problems , 2006 .

[37]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .