Timely monitoring of partially observable stochastic systems

Ensuring the correct behavior of cyber physical systems at run time is of critical importance for their safe deployment. Any malfunctioning of such systems should be detected in a timely manner for further actions. This paper addresses the issue of how quickly a monitor raises an alarm after the occurrence of a failure in cyber physical systems. Towards this end, it introduces a class of systems called exponentially converging monitorable systems. The paper shows that failures in these systems can be detected fast by employing the traditional threshold monitors. It shows that the expected failure detection time for exponentially converging monitorable systems has logarithmic relationship with the inverse of the chosen threshold value. The paper identifies well defined natural classes of these systems. Experimental results are presented that confirm the theoretical results on the relationship between the failure detection time and the chosen threshold values.

[1]  Bruno O. Shubert,et al.  Random variables and stochastic processes , 1979 .

[2]  Stéphane Lafortune,et al.  Polynomial-time verification of diagnosability of partially observed discrete-event systems , 2002, IEEE Trans. Autom. Control..

[3]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[4]  H. Vincent Poor,et al.  Quickest Detection: Probabilistic framework , 2008 .

[5]  A. Prasad Sistla,et al.  Monitoring Off-the-Shelf Components , 2006, VMCAI.

[6]  A. Prasad Sistla,et al.  Monitoring the Full Range of omega-Regular Properties of Stochastic Systems , 2008, VMCAI.

[7]  A. Prasad Sistla,et al.  Monitorability of Stochastic Dynamical Systems , 2011, CAV.

[8]  Mahesh Viswanathan,et al.  Foundations for the Run-Time Monitoring of Reactive Systems - Fundamentals of the MaC Language , 2004, ICTAC.

[9]  Wolfram Burgard,et al.  Robust Monte Carlo localization for mobile robots , 2001, Artif. Intell..

[10]  Nando de Freitas,et al.  Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks , 2000, UAI.

[11]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[12]  Insup Lee,et al.  RT-MaC: runtime monitoring and checking of quantitative and probabilistic properties , 2005, 11th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA'05).

[13]  Feng Zhao,et al.  Estimation of Distributed Hybrid Systems Using Particle Filtering Methods , 2003, HSCC.

[14]  Amir Pnueli,et al.  PSL Model Checking and Run-Time Verification Via Testers , 2006, FM.

[15]  H.A.P. Blom,et al.  Particle filtering for stochastic hybrid systems , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[16]  Mark Lawford,et al.  Probabilistic Supervisory Control of Probabilistic Discrete Event Systems , 2009, IEEE Transactions on Automatic Control.

[17]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[18]  Martin Leucker,et al.  Runtime Verification for LTL and TLTL , 2011, TSEM.

[19]  A. Prasad Sistla,et al.  Runtime Monitoring of Stochastic Cyber-Physical Systems with Hybrid State , 2011, RV.

[20]  Alberto L. Sangiovanni-Vincentelli,et al.  Design of Observers for Hybrid Systems , 2002, HSCC.

[21]  Amir Pnueli,et al.  Monitoring Interfaces for Faults , 2006, Electron. Notes Theor. Comput. Sci..

[22]  Gautam Biswas,et al.  Hybrid Systems Diagnosis , 2000, HSCC.

[23]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[24]  Aarnout Brombacher,et al.  Probability... , 2009, Qual. Reliab. Eng. Int..

[25]  G. Rosu,et al.  Efficient Monitoring of ω-Languages , 2005 .

[26]  J. Pedoe,et al.  Sequential Methods in Statistics , 1966 .

[27]  Brian C. Williams,et al.  Mode Estimation of Probabilistic Hybrid Systems , 2002, HSCC.

[28]  Sebastian Thrun,et al.  Real-time fault diagnosis [robot fault diagnosis] , 2004, IEEE Robotics & Automation Magazine.

[29]  A. Prasad Sistla,et al.  Taming Interface Specifications , 2005, CONCUR.

[30]  Vijay K. Garg,et al.  Control of stochastic discrete event systems modeled by probabilistic languages , 2001, IEEE Trans. Autom. Control..

[31]  Moshe Y. Vardi Automatic verification of probabilistic concurrent finite state programs , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[32]  Yliès Falcone,et al.  Runtime Verification of Safety-Progress Properties , 2009, RV.

[33]  Ezio Bartocci,et al.  Runtime Verification with State Estimation , 2011, RV.