Critical analysis of equations-of-motion—Green's function method: Ionization potentials of N2

[1]  N. Hush,et al.  Theoretical study of the N+2 molecular ion , 1976 .

[2]  L. Cederbaum,et al.  The electronic structure of molecules by a many‐body approach. I. Ionization potentials and one‐electron properties of benzene , 1976 .

[3]  J. Simons,et al.  A calculation of the electron affinity of the lithium molecule , 1976 .

[4]  J. Simons,et al.  Theoretical study of stable negative ions of polar molecules: NaH−, LiH−, LiF−, BeO− , 1976 .

[5]  J. Simons,et al.  Theoretical studies of molecular ions. Ionization potentials of CN− and BO− , 1976 .

[6]  K. Freed,et al.  Response function theory of electron correlation , 1976 .

[7]  J. Simons,et al.  Analysis of the equation-of-motion theory of electron affinities and ionization potentials , 1976 .

[8]  Y. Öhrn,et al.  Hermiticity of the superoperator Hamiltonian in propagator theory , 1976 .

[9]  J. Simons,et al.  A complete treatment of the electron propagator through third order , 1975 .

[10]  J. Simons,et al.  Theoretical predictions of stable negative ions: HF−, LiH−, NaH− , 1975 .

[11]  G. Diercksen,et al.  The electronic structure of molecules by a many-body approach: II. Ionization potentials one-electron properties of pyridine and phosphoridine , 1975 .

[12]  K. Freed,et al.  Comparison between equations-of-motion and green's function methods for the particle-hole response function , 1975 .

[13]  L. Cederbaum Non‐single‐particle excitations in finite Fermi systems , 1975 .

[14]  Y. Öhrn,et al.  Electron propagator calculations of the photoelectron spectrum for open shell molecules with applications to the oxygen molecule , 1975 .

[15]  Theoretical studies of molecular ions. The ionization potential and electron affinity of BH , 1975 .

[16]  J. Simons,et al.  Theoretical studies of molecular ions: Be−2 , 1975 .

[17]  Theoretical studies of molecular ions. Vertical ionization potentials of hydrogen fluoride , 1974 .

[18]  J. Simons,et al.  Theoretical studies of molecular ions. Vertical detachment energy of OH , 1974 .

[19]  Y. Öhrn,et al.  Atomic and molecular electronic spectra and properties from the electron propagator , 1974 .

[20]  J. Simons,et al.  Theoretical studies of molecular ions. Vertical ionization potentials of the nitrogen molecule , 1974 .

[21]  L. Cederbaum,et al.  Direct calculation of ionization potentials of atoms and molecules: application to Ne , 1974 .

[22]  L. Cederbaum,et al.  Improved calculations of ionization potentials of closed-shell molecules , 1973 .

[23]  B. T. Pickup,et al.  Direct calculation of ionization energies , 1973 .

[24]  L. Cederbaum Direct calculation of ionization potentials of closed-shell atoms and molecules , 1973 .

[25]  J. Simons,et al.  Theory of electron affinities of small molecules , 1973 .

[26]  L. Cederbaum,et al.  On the breakdown of the Koopmans' theorem for nitrogen , 1973 .

[27]  V. McKoy,et al.  Equations‐of‐motion method including renormalization and double‐excitation mixing , 1973 .

[28]  Vincent McKoy,et al.  Application of the equations-of-motion method to the excited states of N2, CO, and C2H4 , 1973 .

[29]  L. Cederbaum,et al.  Calculation of the vertical ionization potentials of formaldehyde by means of perturbation theory , 1971 .

[30]  V. McKoy,et al.  Application of the RPA and Higher RPA to the V and T States of Ethylene , 1971 .

[31]  V. McKoy,et al.  Application of a Higher RPA to a Model π‐Electron System , 1970 .

[32]  V. McKoy,et al.  Nonempirical Calculations on Excited States: The Formaldehyde Molecule , 1968 .

[33]  David J Rowe,et al.  EQUATIONS-OF-MOTION METHOD AND THE EXTENDED SHELL MODEL. , 1968 .

[34]  V. McKoy,et al.  Nonempirical Calculations on Excited States: The Ethylene Molecule , 1967 .

[35]  A. C. Wahl,et al.  Electronic Structure of Diatomic Molecules. III. A. Hartree—Fock Wavefunctions and Energy Quantities for N2(X1Σg+) and N2+(X2Σg+, A2Πu, B2Σu+) Molecular Ions , 1966 .

[36]  R. Nesbet Electronic Structure of N2, CO, and BF , 1964 .