Image-based multiresolution shape recovery by surface deformation

This paper presents a novel approach for constructing multiresolution surface models from a set of calibrated images. The output is a texture-mapped triangular surface mesh that best matches all the input images. The mesh is obtained by deforming a generic initial mesh such as a sphere or cube according to image and geometry-based forces. This technique has the following key features: (1) the initial mesh is able to converge to the object surface from arbitrarily far away, (2) the resolution of the final mesh adapts to the local complexity of the object, (3) sharp corners and edges of object surface are preserved in the final mesh, (4) occlusion is correctly modeled during convergence, (5) re-projection error of the final mesh is optimized, and (6) the output is ideally suited for rendering by existing graphics hardware. The approach is shown is shown to yield good results on real image sequences.