Computation of the airflow in a pilot scale clean room using K-ε turbulence models

Abstract This work deals with the assessment of the airflow in a food-processing clean room. The flow pattern inside the working area of a pilot scale clean room was numerically investigated using a computational fluid dynamics code based on a finite volume formulation. Two versions of the k-e turbulence model were tested: the standard and the RNG version. The analysis of the velocity magnitude does not reveal sensitive differences between them. Moreover, both models well predict the main features of the flow and numerical results agree with experimental measurements. However, a further examination shows that the RNG k-e turbulence model predicts more swirls and more complex trajectories. As the standard k-e model overestimates the turbulent diffusion, the RNG version seems to be more suitable to calculate the airflow in clean rooms. The influence of initial turbulence intensity is also pointed out. Finally, the study of the airflow below a laminar flow unit confirms that the design of clean rooms can benefit from the numerical approach.