Growth and thermal properties of doped monocrystalline titanium-silicide based quantum dot superlattices

[1]  G. Bernard-Granger,et al.  Titanium-based silicide quantum dot superlattices for thermoelectrics applications , 2015, Nanotechnology.

[2]  T. Lasri,et al.  Thermoelectric infrared microsensors based on a periodically suspended thermopile integrating nanostructured Ge/SiGe quantum dots superlattice , 2014 .

[3]  G. Bernard-Granger,et al.  Influence of in situ formed MoSi2 inclusions on the thermoelectrical properties of an N-type silicon–germanium alloy , 2014 .

[4]  Sie-Young Choi,et al.  Characteristics of Amorphous Silicon Thin-Film Solar Cells of a-Si:H/a-SiGe:H Superlattices in Different Thickness for Barrier and Well Layers , 2013 .

[5]  G. Savelli,et al.  Growth, electrical and thermal properties of doped mono and polycrystalline SiGe-based quantum dot superlattices , 2012 .

[6]  L. Montès,et al.  Growth of heavily doped monocrystalline and polycrystalline SiGe-based quantum dot superlattices , 2012 .

[7]  Jae-Won Shin,et al.  The Optical Properties of a-Si:H/a-SiGex:H Superlattice Structure to Apply Intrinsic Layer in Solar Cell , 2010 .

[8]  J. Schumann,et al.  Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers. , 2010, Nature materials.

[9]  J. Hartmann,et al.  Growth kinetics of SiGe/Si superlattices on bulk and silicon-on-insulator substrates for multi-channel devices , 2009 .

[10]  M. Plissonnier,et al.  "Nanoparticle-in-alloy" approach to efficient thermoelectrics: silicides in SiGe. , 2009, Nano letters.

[11]  G. Savelli,et al.  An innovating technological approach for Si–SiGe superlattice integration into thermoelectric modules , 2008 .

[12]  Jianlin Liu,et al.  Ge/Si Self-Assembled Quantum Dots and Their Optoelectronic Device Applications , 2007, Proceedings of the IEEE.

[13]  M. Plissonnier,et al.  Realization and optimization of thermoelectric devices using bismuth and antimony materials , 2006, 2006 25th International Conference on Thermoelectrics.

[14]  Thomas Ernst,et al.  Growth of SiGe/Si superlattices on silicon-on-insulator substrates for multi-bridge channel field effect transistors , 2005 .

[15]  M. Östling,et al.  Incorporation of boron in SiGe(C) epitaxial layers grown by reduced pressure chemical vapor deposition , 2005 .

[16]  S. McAlister,et al.  Growth and characterization of Si/SiGe strained-layer superlattices on bulk single-crystal SiGe and Si substrates , 2003 .

[17]  M. P. Walsh,et al.  Quantum Dot Superlattice Thermoelectric Materials and Devices , 2002, Science.

[18]  R. Williams,et al.  Chemically vapor deposited Si nanowires nucleated by self-assembled Ti islands on patterned and unpatterned Si substrates , 2002 .

[19]  K. Goodson,et al.  THERMAL CONDUCTIVITY OF DOPED POLYSILICON LAYERS , 2001, Proceeding of Heat Transfer and Transport Phenomena in Microscale.

[20]  M. Dresselhaus,et al.  In-plane thermoelectric properties of Si/Ge superlattice , 2001, Proceedings ICT2001. 20 International Conference on Thermoelectrics (Cat. No.01TH8589).

[21]  Hartmut Presting,et al.  Enhanced performance of Si opto-devices by SiGe nanostructures , 2001, SPIE OPTO.

[22]  A. Ronda,et al.  Chemical vapor deposition of silicon-germanium heterostructures , 2000 .

[23]  C. Kim,et al.  Heat conduction in alloy-based superlattices , 1998, Seventeenth International Conference on Thermoelectrics. Proceedings ICT98 (Cat. No.98TH8365).

[24]  Robinson,et al.  Phonon scattering in chemical-vapor-deposited diamond. , 1994, Physical review. B, Condensed matter.

[25]  E. F. Steigmeier,et al.  Thermal and Electrical Properties of Heavily Doped Ge‐Si Alloys up to 1300°K , 1964 .

[26]  I. Berbezier,et al.  Vapor–solid–solid growth of Ge nanowires from GeMn solid cluster seeds , 2011 .

[27]  A. Gossard,et al.  Frequency-Dependent Thermal Conductivity in Time Domain Thermoreflectance Analysis of Thin Films , 2011 .

[28]  S. Dilhaire,et al.  Nanoscale Thermal Transport Studied With Heterodyne Picosecond Thermoreflectance , 2009 .