Hamilton's rule in multi-level selection models.

Hamilton's rule is regarded as a useful tool in the understanding of social evolution, but it relies on restrictive, overly simple assumptions. Here we model more realistic situations, in which the traditional Hamilton's rule generally fails to predict the direction of selection. We offer modifications that allow accurate predictions, but also show that these Hamilton's rule type inequalities do not predict long-term outcomes. To illustrate these issues we propose a two-level selection model for the evolution of cooperation. The model describes the dynamics of a population of groups of cooperators and defectors of various sizes and compositions and contains birth-death processes at both the individual level and the group level. We derive Hamilton-like inequalities that accurately predict short-term evolutionary change, but do not reliably predict long-term evolutionary dynamics. Over evolutionary time, cooperators and defectors can repeatedly change roles as the favored type, because the amount of assortment between cooperators changes in complicated ways due to both individual-level and group-level processes. The equation that governs the dynamics of cooperator/defector assortment is a certain partial differential equation, which can be solved numerically, but whose behaviour cannot be predicted by Hamilton's rules, because Hamilton's rules only contain first-derivative information. In addition, Hamilton's rules are sensitive to demographic fitness effects such as local crowding, and hence models that assume constant group sizes are not equivalent to models like ours that relax that assumption. In the long-run, the group distribution typically reaches an equilibrium, in which case Hamilton's rules necessarily become equalities.

[1]  D. Queller Kinship, reciprocity and synergism in the evolution of social behaviour , 1985, Nature.

[2]  Matthijs van Veelen,et al.  Group selection, kin selection, altruism and cooperation: when inclusive fitness is right and when it can be wrong. , 2009 .

[3]  Hamilton's missing link. , 2007 .

[4]  R. LeVeque Numerical methods for conservation laws , 1990 .

[5]  S. Okasha Evolution and the Levels of Selection , 2007 .

[6]  Michael Doebeli,et al.  A simple and general explanation for the evolution of altruism , 2009, Proceedings of the Royal Society B: Biological Sciences.

[7]  M. Nowak,et al.  Evolution of cooperation by multilevel selection. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[8]  J. D. Dyken,et al.  The components of kin competition. , 2010 .

[9]  Matthijs van Veelen The replicator dynamics with n players and population structure. , 2011, Journal of theoretical biology.

[10]  Matthijs van Veelen,et al.  Group selection, kin selection, altruism and cooperation: when inclusive fitness is right and when it can be wrong. , 2009, Journal of theoretical biology.

[11]  R. Axelrod,et al.  Evolutionary Dynamics , 2004 .

[12]  W. Hamilton The genetical evolution of social behaviour. I. , 1964, Journal of theoretical biology.

[13]  R. Willis,et al.  Biosocial Anthropology , 2009 .

[14]  J. Pepper,et al.  Relatedness in trait group models of social evolution. , 2000, Journal of theoretical biology.

[15]  I. L. Heisler,et al.  Alternative formulations of multilevel selection , 1988 .

[16]  Burton Simon,et al.  A dynamical model of two-level selection , 2010 .

[17]  Matthijs van Veelen,et al.  The replicator dynamics with n players and population structure , 2011 .

[18]  B. Simon A stochastic model of evolutionary dynamics with deterministic large-population asymptotics. , 2008, Journal of theoretical biology.

[19]  J. Van Dyken THE COMPONENTS OF KIN COMPETITION , 2010, Evolution; international journal of organic evolution.