Advanced High Strength Bainitic Steels

The automotive industry is one of the greatest markets for materials produced in the steel sector, but it is also one of the most dynamic, due mainly to governmental requirements that change according to newer, stricter environmental and security policies.

[1]  T. Gladman,et al.  Work hardening of dual-phase steels , 1981 .

[2]  H. Bhadeshia,et al.  Formation of nanostructured steels by phase transformation , 2004 .

[3]  H. Bhadeshia,et al.  Bainite in steels : transformations, microstructure and properties , 1992 .

[4]  C. Capdevila,et al.  Effects of Morphology and Stability of Retained Austenite on the Ductility of TRIP-aided Bainitic Steels , 2008 .

[5]  A. Clarke,et al.  Examination of carbon partitioning into austenite during tempering of bainite , 2010 .

[6]  G. Smith,et al.  Spinodal decomposition during aging of Fe-Ni-C martensites , 1989 .

[7]  G. Langford,et al.  Calculation of cell-size strengthening of wire-drawn iron , 1970 .

[8]  D. Edmonds,et al.  Fracture toughness of two experimental high-strength bainitic low-alloy steels containing silicon , 1987 .

[9]  G. Bégin,et al.  A study of the peculiarities of austenite during the formation of bainite , 1971 .

[10]  D. Suh,et al.  Strain partitioning and mechanical stability of retained austenite , 2010 .

[11]  W. C. Leslie,et al.  The physical metallurgy of steels , 1981 .

[12]  J. Embury,et al.  The structure and properties of drawn pearlite , 1966 .

[13]  H. Bhadeshia,et al.  Temperature cycling and the rate of the bainite transformation , 2010 .

[14]  H. Bhadeshia,et al.  Development of Hard Bainite , 2003 .

[15]  S. Babu,et al.  Atomic scale observations of bainite transformation in a high carbon high silicon steel , 2007 .

[16]  T. Maki Current State and Future Prospect of Microstructure Control in Steels , 1995 .

[17]  H. Bhadeshia,et al.  High resolution observations of displacements caused by bainitic transformation , 1996 .

[18]  H. Zoch,et al.  Microstructure and fatigue strength of the roller-bearing steel 100Cr6 (SAE 52100) after two-step bainitisation and combined bainitic–martensitic heat treatment , 2006 .

[19]  T. Langdon,et al.  Development of fine grained structures using severe plastic deformation , 2000 .

[20]  R. Valiev,et al.  Bulk nanostructured materials from severe plastic deformation , 2000 .

[21]  H. K. D. H. Bhadeshia,et al.  Bainite in silicon steels: New composition–property approach Part 1 , 1983 .

[22]  H. Bhadeshia,et al.  Influence of silicon on cementite precipitation in steels , 2008 .

[23]  Shigekazu Morito,et al.  Dislocation density within lath martensite in Fe-C and Fe-Ni alloys , 2003 .

[24]  G. D. Smith,et al.  The distribution of substitutional alloying elements during the bainite transformation , 1990 .

[25]  F. Caballero,et al.  Carbon supersaturation of ferrite in a nanocrystalline bainitic steel , 2010 .

[26]  Dieter. Fahr,et al.  ENHANCEMENT OF DUCTILITY IN HIGH STRENGTH STEELS , 1969 .

[27]  H. Nevalainen,et al.  Structu re-property relationships in commercial low-alloy bainitic-austenitic steel with high strength, ductility, and toughness , 1981 .

[28]  K. Tsuzaki,et al.  Formation mechanism of bainitic ferrite in an Fe-2 Pct Si-0.6 Pct C alloy , 1994 .

[29]  H. Bhadeshia,et al.  Residual stress. Part 2 – Nature and origins , 2001 .

[30]  T. Sourmail,et al.  Stability of retained austenite in TRIP-assisted steels , 2004 .

[31]  R. Valiev,et al.  Structure and properties of ultrafine-grained materials produced by severe plastic deformation , 1993 .

[32]  Pascal Jacques,et al.  Improvement of mechanical properties through concurrent deformation and transformation : new steels for the 21st century , 2002 .

[33]  H. K. D. H. Bhadeshia,et al.  Design of novel high strength bainitic steels: Part 1 , 2001 .

[34]  D. Edmonds,et al.  Microstructural examination of two experimental high-strength bainitic low-alloy steels containing silicon , 1987 .

[35]  Yutaka Ono,et al.  Composition and Grain Size Dependencies of Strain-induced Martensitic Transformation in Metastable Austenitic Stainless Steels , 1977 .

[36]  V. Segal Severe plastic deformation: simple shear versus pure shear , 2002 .

[37]  H. Bhadeshia,et al.  TRIP-assisted steels: cracking of high-carbon martensite , 2006 .

[38]  P. Withers,et al.  Residual stress. Part 1 – Measurement techniques , 2001 .

[39]  H. Bhadeshia,et al.  Bimodal size-distribution of bainite plates , 2006 .

[40]  R. W. Reed,et al.  Stress induced transformation to bainite in Fe–Cr–Mo–C pressure vessel steel , 1991 .

[41]  P. Brown,et al.  Design of novel high strength bainitic steels: Part 2 , 2001 .

[42]  Hiroshi Utsunomiya,et al.  Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process , 1998 .

[43]  H. Bhadeshia,et al.  Coalesced bainite by isothermal transformation of reheated weld metal , 2008 .

[44]  H. Takechi,et al.  Effects of strengthening mechanisms on fatigue damage for 600 MPa class hot-rolled high strength sheet steels , 1990 .

[45]  H. Bhadeshia Bessemer Memorial Lecture: The dimensions of steel , 2007 .

[46]  H. Bhadeshia,et al.  Acceleration of Low-temperature Bainite , 2003 .

[47]  H. Bhadeshia,et al.  The bainite transformation in a silicon steel , 1979 .

[48]  George Krauss,et al.  Steels: Heat Treatment and Processing Principles , 1990 .

[49]  H. Bhadeshia The dimensions of steel , 2007 .

[50]  M. J. Peet,et al.  Synchrotron X-ray studies of austenite and bainitic ferrite , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[51]  F. Pickering,et al.  Structure–property relationships in dual-phase steels , 1982 .

[52]  F. Delannay,et al.  Multiscale mechanics of TRIP-assisted multiphase steels: II. Micromechanical modelling , 2007 .

[53]  J. Yang,et al.  Mechanical stabilisation of austenite , 2006 .

[54]  C. Capdevila,et al.  Design of Advanced Bainitic Steels by Optimisation of TTT Diagrams and T0 Curves , 2006 .

[55]  J. Jiménez,et al.  On measurement of carbon content in retained austenite in a nanostructured bainitic steel , 2011, Journal of Materials Science.

[56]  F. Delannay,et al.  The Developments of Cold-rolled TRIP-assisted Multiphase Steels. Al-alloyed TRIP-assisted Multiphase Steels , 2001 .

[57]  J. Yang,et al.  Complementary use of transmission electron microscopy and atom probe tomography for the examination of plastic accommodation in nanocrystalline bainitic steels , 2011 .

[58]  M. Sherif Characterisation and Development of Nanostructured, Ultrahigh Strength, and Ductile Bainitic Steels , 2006 .

[59]  H. Bhadeshia,et al.  Bainite: An atom-probe study of the incomplete reaction phenomenon , 1982 .

[60]  V. Vítek,et al.  Structure-dependent intergranular segregation of phosphorus in austenite in a Ni-Cr steel , 1978 .

[61]  G. Miyamoto,et al.  Distribution of Dislocations in Nanostructured Bainite , 2011 .

[62]  A. Mallik,et al.  Strain tempering of bainite , 1970, Metallurgical and Materials Transactions B.

[63]  L. Karlsson,et al.  Influence of carbon, manganese and nickel on microstructure and properties of strong steel weld metals: Part 1 – Effect of nickel content , 2006 .

[64]  G. B. Olson,et al.  Innovations in Ultrahigh-Strength Steel Technology , 1990 .

[65]  Kiyotaka Nakano,et al.  Retained austenite characteristics and stretch-flangeability of high-strength low-alloy TRIP type bainitic sheet steels , 2002 .

[66]  T. C. Lindley,et al.  Electron backscattering diffraction study of acicular ferrite, bainite, and martensite steel microstructures , 2000 .

[67]  Morris Cohen,et al.  Structural changes and strengthening in the strain tempering of martensite , 1970 .

[68]  Mingxing Zhang,et al.  Determination of Carbon Content in Bainitic Ferrite and Carbon Distribution in Austenite by Using CBKLDP , 1998 .

[69]  H. Bhadeshia,et al.  Nucleation theory for high-carbon bainite , 2004 .

[70]  H. Bhadeshia,et al.  A rationalisation of shear transformations in steels , 1981 .

[71]  C. Capdevila,et al.  Phase transformation theory: A powerful tool for the design of advanced steels , 2008 .

[72]  H. Bhadeshia,et al.  Model for transition from upper to lower bainite , 1990 .

[73]  W. Świątnicki,et al.  Grain boundary structure and intergranular segregation in Al2O3 , 1995 .

[74]  M. Santofimia,et al.  New Experimental Evidence on the Incomplete Transformation Phenomenon in Steel. , 2009 .

[75]  M. J. Peet,et al.  Surface Relief Due to Bainite Transformation at 473 K (200 °C) , 2011 .

[76]  C. Capdevila,et al.  Toughness deterioration in advanced high strength bainitic steels , 2009 .

[77]  M. Santofimia,et al.  Theoretical design and advanced microstructure in super high strength steels , 2009 .

[78]  H. K. D. H. Bhadeshia,et al.  The mechanism of bainite formation in steels , 1980 .

[79]  H. Bhadeshia,et al.  High-strength (5 GPa) steel wire: an atom-probe study , 1993 .

[80]  F. Caballero,et al.  Design of carbide-free low-temperature ultra high strength bainitic steels , 2007 .

[81]  R. Honeycombe Steels, Microstructure and Properties , 1982 .

[82]  Francisca García Caballero,et al.  Ultra-high-strength Bainitic Steels , 2005 .

[83]  G. Langford A study of the deformation of patented steel wire , 1970 .

[84]  M. Miller,et al.  A study of the early stages of tempering of iron-carbon martensites by atom probe field ion microscopy , 1981 .

[85]  T. Yokota,et al.  New concepts for ultra refinement of grain size in Super Metal Project , 2001 .

[86]  H. Andren,et al.  Reply to discussion by H. I. Aaronson and W. T. Reynolds, Jr. to “atom probe field ion microscopy of bainitic transformation in 2.25Cr-1Mo weld metal” , 1994 .

[87]  H. Bhadeshia,et al.  Bainite formation influenced by large stress , 2004 .

[88]  A. Nagasaka,et al.  Effects of Warm Forming on Stretch-flangeability of a TRIP-aided Dual-phase Sheet Steel , 1997 .

[89]  T. Sourmail,et al.  Effect of Partial Martensite Transformation on Bainite Reaction Kinetics in Different 1%C Steels , 2011 .

[90]  Shigekazu Morito,et al.  The morphology and crystallography of lath martensite in alloy steels , 2006 .

[91]  H. Bhadeshia,et al.  Austenite films in bainitic microstructures , 1995 .

[92]  C. Capdevila,et al.  Estimation of dislocation density in bainitic microstructures using high-resolution dilatometry , 2009 .

[93]  H. Bhadeshia,et al.  Estimation of bainite plate-thickness in low-alloy steels , 1998 .

[94]  B. Sandvik The Bainite reaction in Fe-Si-C Alloys: The primary stage , 1982 .

[95]  D. Edmonds,et al.  Tensile deformation of two experimental high-strength bainitic low-alloy steels containing silicon , 1987 .

[96]  H. Bhadeshia,et al.  Lattice spacings from lattice fringes , 1981 .

[97]  V. Segal Equal channel angular extrusion: from macromechanics to structure formation , 1999 .

[98]  E. Bain,et al.  Transformation of austenite at constant subcritical temperatures , 1970, Metallurgical and Materials Transactions B.

[99]  A. Mascanzoni,et al.  Microstructure and cleavage resistance of low-carbon bainitic steels , 1977 .

[100]  Y. Bréchet,et al.  The role of carbon on the kinetics of bainite transformation in steels , 2002 .

[101]  Francisca García Caballero,et al.  Very strong low temperature bainite , 2002 .

[102]  F. Caballero,et al.  The Role of Retained Austenite on Tensile Properties of Steels with Bainitic Microstructures , 2005 .

[103]  M. J. Peet,et al.  Tempering of hard mixture of bainitic ferrite and austenite , 2004 .

[104]  J. Rodriguez-Ibabe,et al.  The Role of Microstructure in Toughness Behaviour of Microalloyed Steels , 1998 .