Accelerating Dynamic Iteration Methods with Application to Semiconductor Device Simulation

In this paper, we apply a Galerkin method to solving the system of second-kind Volterra integral equations which characterize the classical dynamic iteration methods for the linear time-varying initial value problem. It is shown that the Galerkin approximations can be computed iteratively using conjugate-direction algorithms. The resulting iterative methods are combined with an operator Newton method and applied to solving the differential-algebraic system generated by spatial discretization of the time-dependent semiconductor device equations. Experimental results are included which demonstrate the conjugate-direction methods are significantly faster than classical dynamic iteration methods.

[1]  H. Gummel,et al.  Large-signal analysis of a silicon Read diode oscillator , 1969 .

[2]  Alberto L. Sangiovanni-Vincentelli,et al.  The Waveform Relaxation Method for Time-Domain Analysis of Large Scale Integrated Circuits , 1982, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[3]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[4]  Jacob K. White,et al.  Relaxation Techniques for the Simulation of VLSI Circuits , 1986 .

[5]  Peter Linz,et al.  Analytical and numerical methods for Volterra equations , 1985, SIAM studies in applied and numerical mathematics.

[6]  Andrew Lumsdaine,et al.  Theoretical and practical aspects of parallel numerical algorithms for initial value problems, with applications , 1992 .

[7]  Jacob K. White,et al.  Accelerated waveform relaxation techniques for the parallel transient simulation of semiconductor devices , 1993 .

[8]  P. Sonneveld CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .

[9]  R. MacCamy,et al.  Numerical solution of Volterra integral equations , 1979 .

[10]  R. Freund,et al.  QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .

[11]  Jacob K. White,et al.  Waveform relaxation for transient simulation of two-dimensional MOS devices , 1989, 1989 IEEE International Conference on Computer-Aided Design. Digest of Technical Papers.

[12]  O. Nevanlinna Remarks on Picard-Lindelöf iteration , 1989 .

[13]  Benedict J. Leimkuhler Estimating Waveform Relaxation Convergence , 1993, SIAM J. Sci. Comput..

[14]  O. Nevanlinna,et al.  Convergence of dynamic iteration methods for initial value problems , 1987 .

[15]  S. Mikhlin,et al.  Variational Methods in Mathematical Physics , 1965 .

[16]  Jacob K. White,et al.  Waveform relaxation applied to transient device simulation , 1988, 1988., IEEE International Symposium on Circuits and Systems.

[17]  D. Whittaker,et al.  A Course in Functional Analysis , 1991, The Mathematical Gazette.

[18]  Ulla Miekkala,et al.  Dynamic iteration methods applied to linear DAE systems , 1989 .

[19]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[20]  Yousef Saad,et al.  Hybrid Krylov Methods for Nonlinear Systems of Equations , 1990, SIAM J. Sci. Comput..

[21]  Resve A. Saleh,et al.  Accelerating relaxation algorithms for circuit simulation using waveform-Newton and step-size refinement , 1988, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[22]  Albert E. Ruehli,et al.  WAVEFORM RELAXATION: THEORY AND PRACTICE , 1985 .

[23]  Kartikeya Mayaram,et al.  CODECS: a fixed mixed-level device and circuit simulator , 1988, [1988] IEEE International Conference on Computer-Aided Design (ICCAD-89) Digest of Technical Papers.

[24]  K. Atkinson,et al.  A survey of numerical methods for the solution of Fredholm integral equations of the second kind , 1977 .

[25]  Rainer Laur,et al.  MEDUSA--A Simulator for Modular Circuits , 1982, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[26]  George Miel,et al.  Iterative refinement of the method of moments , 1988 .

[27]  S. Selberherr Analysis and simulation of semiconductor devices , 1984 .

[28]  I︠u︡. V. Vorobʹev Method of moments in applied mathematics , 1965 .

[29]  H. Elman Iterative methods for large, sparse, nonsymmetric systems of linear equations , 1982 .

[30]  Benedict Leimkuhler,et al.  Rapid convergence of waveform relaxation , 1993 .

[31]  Randolph E. Bank,et al.  Transient simulation of silicon devices and circuits , 1985, IEEE Transactions on Electron Devices.

[32]  Pierpaolo Omari On the fast convergence of a Galerkin-like method for equations of the second kind , 1989 .

[33]  R. Kress Linear Integral Equations , 1989 .