Extremely Stable Anthraquinone Negolytes Synthesized from Common Precursors

[1]  David G. Kwabi,et al.  Electrolyte Lifetime in Aqueous Organic Redox Flow Batteries: A Critical Review. , 2020, Chemical reviews.

[2]  T. L. Liu,et al.  A pH Neutral, Metal Free Aqueous Organic Redox Flow Battery Employing an Ammonium Anthraquinone Anolyte. , 2019, Angewandte Chemie.

[3]  David G. Kwabi,et al.  A Water-Miscible Quinone Flow Battery with High Volumetric Capacity and Energy Density , 2019, ACS Energy Letters.

[4]  Eugene E. Kwan,et al.  Extending the Lifetime of Organic Flow Batteries via Redox State Management. , 2019, Journal of the American Chemical Society.

[5]  M. Wagner,et al.  Dual Role of Doubly Reduced Arylboranes as Dihydrogen- and Hydride-Transfer Catalysts. , 2019, Journal of the American Chemical Society.

[6]  David G. Kwabi,et al.  A Phosphonate‐Functionalized Quinone Redox Flow Battery at Near‐Neutral pH with Record Capacity Retention Rate , 2019, Advanced Energy Materials.

[7]  N. Gusarova,et al.  Transition metal-free regioselective access to 9,10-dihydroanthracenes via the reaction of anthracenes with elemental phosphorus in the KOH/DMSO system , 2018, Tetrahedron Letters.

[8]  David G. Kwabi,et al.  Alkaline Quinone Flow Battery with Long Lifetime at pH 12 , 2018, Joule.

[9]  Thomas J. Carney,et al.  Estimating the cost of organic battery active materials: a case study on anthraquinone disulfonic acid , 2018, Translational Materials Research.

[10]  David M. Reed,et al.  A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries , 2018, Nature Energy.

[11]  M. Aziz,et al.  Flow Battery Molecular Reactant Stability Determined by Symmetric Cell Cycling Methods , 2018 .

[12]  Alán Aspuru-Guzik,et al.  Alkaline Benzoquinone Aqueous Flow Battery for Large‐Scale Storage of Electrical Energy , 2018 .

[13]  T. L. Liu,et al.  Designer Two-Electron Storage Viologen Anolyte Materials for Neutral Aqueous Organic Redox Flow Batteries , 2017 .

[14]  T. Nokami,et al.  Liquid Quinones for Solvent‐Free Redox Flow Batteries , 2017, Advanced materials.

[15]  M. R. Mohamed,et al.  Recent developments in organic redox flow batteries: A critical review , 2017 .

[16]  Frank C. Walsh,et al.  Engineering aspects of the design, construction and performance of modular redox flow batteries for energy storage , 2017 .

[17]  R. Gordon,et al.  A Neutral pH Aqueous Organic–Organometallic Redox Flow Battery with Extremely High Capacity Retention , 2017 .

[18]  T. L. Liu,et al.  Long-Cycling Aqueous Organic Redox Flow Battery (AORFB) toward Sustainable and Safe Energy Storage. , 2017, Journal of the American Chemical Society.

[19]  Alán Aspuru-Guzik,et al.  A redox-flow battery with an alloxazine-based organic electrolyte , 2016, Nature Energy.

[20]  Michael P. Marshak,et al.  Alkaline quinone flow battery , 2015, Science.

[21]  G. Soloveichik Flow Batteries: Current Status and Trends. , 2015, Chemical reviews.

[22]  Kevin G. Gallagher,et al.  Pathways to Low Cost Electrochemical Energy Storage: A Comparison of Aqueous and Nonaqueous Flow Batteries , 2014 .

[23]  Michael P. Marshak,et al.  A metal-free organic–inorganic aqueous flow battery , 2014, Nature.

[24]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[25]  M. Mench,et al.  Redox flow batteries: a review , 2011 .

[26]  G. Graff,et al.  A Stable Vanadium Redox‐Flow Battery with High Energy Density for Large‐Scale Energy Storage , 2011 .

[27]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[28]  N. Das,et al.  Oxidation of anthracene to anthraquinone in liquid‐phase with an air/oxygen/nitric acid system , 2007 .

[29]  Claire McDonnell,et al.  Enol–keto tautomerism of 9-anthrol and hydrolysis of its methyl ether , 2002 .

[30]  Fang Wang,et al.  An Inexpensive Aqueous Flow Battery for Large-Scale Electrical Energy Storage Based on Water-Soluble Organic Redox Couples , 2014 .

[31]  F. Rodríguez,et al.  Selective oxidation of anthracene to anthraquinone in acetic acid with air in presence of nitric acid , 1989 .

[32]  A. G. Perkin,et al.  CCXXIV.—Reduction products of the hydroxyanthraquinones. Part II , 1923 .