Determination of the susceptibility of Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) to ivermectin and fipronil by Larval Immersion Test (LIT) in Uruguay.

[1]  J. R. Martins,et al.  Diagnoses of fipronil resistance in Brazilian cattle ticks (Rhipicephalus (Boophilus) microplus) using in vitro larval bioassays. , 2010, Veterinary parasitology.

[2]  A. Gil,et al.  Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) resistance to fipronil in Uruguay evaluated by in vitro bioassays. , 2010, Veterinary parasitology.

[3]  G. Klafke,et al.  Selection of an ivermectin-resistant strain of Rhipicephalus microplus (Acari: Ixodidae) in Brazil. , 2010, Veterinary parasitology.

[4]  R. Miller,et al.  First report of the cattle tick Rhipicephalus microplus resistant to ivermectin in Mexico. , 2010, Veterinary parasitology.

[5]  R. Miller,et al.  In vitro tests to establish LC50 and discriminating concentrations for fipronil against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) and their standardization. , 2009, Veterinary parasitology.

[6]  J. Rigo,et al.  Dorsal unpaired median neurons of locusta migratoria express ivermectin- and fipronil-sensitive glutamate-gated chloride channels. , 2007, Journal of neurophysiology.

[7]  J. R. Martins,et al.  Larval immersion tests with ivermectin in populations of the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) from State of Sao Paulo, Brazil. , 2006, Veterinary parasitology.

[8]  M. Benedict,et al.  Independent mutations in the Rdl locus confer dieldrin resistance to Anopheles gambiae and An. arabiensis , 2005, Insect molecular biology.

[9]  J. Bloomquist Chloride channels as tools for developing selective insecticides. , 2003, Archives of insect biochemistry and physiology.

[10]  D. Kemp,et al.  Tests to determine LC50 and discriminating doses for macrocyclic lactones against the cattle tick, Boophilus microplus. , 2001, Veterinary parasitology.

[11]  Nannan Liu,et al.  Insecticide Resistance and Cross-Resistance in the House Fly (Diptera: Muscidae) , 2000, Journal of economic entomology.

[12]  R. Hunt,et al.  Resistance to dieldrin + fipronil assorts with chromosome inversion 2La in the malaria vector Anopheles gambiae , 2000, Medical and veterinary entomology.

[13]  Z. Wen,et al.  Toxicity of Fipronil to Susceptible and Resistant Strains of German Cockroaches (Dictyoptera: Blattellidae) and House Flies (Diptera: Muscidae) , 1997 .

[14]  J. Casida,et al.  Drosophila GABA-gated chloride channel: modified [3H]EBOB binding site associated with Ala-->Ser or Gly mutants of Rdl subunit. , 1995, Life sciences.

[15]  D. Vassilatis,et al.  Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans , 1994, Nature.

[16]  G. Georghiou Principles of insecticide résistance management , 1994 .

[17]  John E. Casida,et al.  Action of phenylpyrazole insecticides at the GABA-gated chloride channel , 1993 .

[18]  R. D. Shaw Culture of an organophosphorus-resistant strain of Boophilus microplus (Can.) and an assessment of its resistance spectrum. , 1966, Bulletin of entomological research.

[19]  U. Cuore,et al.  Características de los garrapaticidas utilizados en Uruguay. Eficacia y poder residual , 2008 .

[20]  U. Cuore,et al.  Primer diagnóstico de resistencia al Fipronil en la garrapata común del ganado Boophilus microplus , 2007 .

[21]  J. R. Martins,et al.  Avermectin resistance of the cattle tick Boophilus microplus in Brazil. , 2001, The Veterinary record.

[22]  H. Kasap,et al.  Insecticide resistance in Anopheles sacharovi Favre in southern Turkey. , 2000, Bulletin of the World Health Organization.

[23]  J. Bloomquist Cyclodiene resistance at the insect GABA receptor/chloride channel complex confers broad cross resistance to convulsants and experimental phenylpyrazole insecticides. , 1994, Archives of insect biochemistry and physiology.

[24]  B. Tabashnik,et al.  Pesticide Resistance in Arthropods , 1990, Springer US.

[25]  G. Georghiou The Effect of Agrochemicals on Vector Populations , 1990 .