Unstructured finite element method for the solution of the Boussinesq problem in three dimensions

SUMMARY We present a numerical method for the monolithic discretisation of the Boussinesq system in three spatial dimensions. The key ingredients of the proposed methodology are the finite element discretisation of the spatial part of the problem using unstructured tetrahedral meshes, an implicit time integrator, based on adaptive predictor–corrector scheme (the explicit second-order Adams–Bashforth method with the implicit stabilised trapezoid rule), and a new preconditioned Krylov subspace solver for the resulting linearised discrete problem. We test the proposed methodology on a number of physically relevant cases, including laterally heated cavities and the Rayleigh–Benard convection. Copyright © 2013 John Wiley & Sons, Ltd.

[1]  G. Ahlers Experiments on spatio-temporal chaos , 1998 .

[2]  Shunichi Wakitani Numerical Study of Three-Dimensional Oscillatory Natural Convection at Low Prandtl Number in Rectangular Enclosures , 2001 .

[3]  Christopher Smethurst A Finite Element Solution of the Natural Convection Problem in 3D , 2010 .

[4]  David F. Griffiths,et al.  Adaptive Time-Stepping for Incompressible Flow Part I: Scalar Advection-Diffusion , 2008, SIAM J. Sci. Comput..

[5]  Numerical simulation of the Rayleigh–Bénard convection of air in a box of a large aspect ratio , 1999 .

[6]  Periodic convection in liquid close to onset , 2003 .

[7]  Wulf G. Dettmer,et al.  An analysis of the time integration algorithms for the finite element solutions of incompressible Navier-Stokes equations based on a stabilised formulation , 2003 .

[8]  G. Privitera,et al.  Density Gradient Ultracentrifugation of Nanotubes: Interplay of Bundling and Surfactants Encapsulation , 2010 .

[9]  J. E. Hart,et al.  Stability of Thin Non-Rotating Hadley Circulations , 1972 .

[10]  John R. Gilbert,et al.  Parallel Sparse Matrix-Matrix Multiplication and Indexing: Implementation and Experiments , 2011, SIAM J. Sci. Comput..

[11]  Shihe Xin,et al.  An extended Chebyshev pseudo‐spectral benchmark for the 8:1 differentially heated cavity , 2002 .

[12]  S. Korpela,et al.  Stability and finite amplitude natural convection in a shallow cavity with insulated top and bottom and heated from a side , 1988 .

[13]  Friedrich H. Busse,et al.  The stability of finite amplitude cellular convection and its relation to an extremum principle , 1967, Journal of Fluid Mechanics.

[14]  John R. Gilbert,et al.  Challenges and Advances in Parallel Sparse Matrix-Matrix Multiplication , 2008, 2008 37th International Conference on Parallel Processing.

[15]  Matthias Heil,et al.  An efficient preconditioner for monolithically-coupled large-displacement fluid-structure interaction problems with pseudo-solid mesh updates , 2012, J. Comput. Phys..

[16]  R. Lakkaraju,et al.  Effects of Prandtl number and a new instability mode in a plane thermal plume , 2007, Journal of Fluid Mechanics.

[17]  J. C. Simo,et al.  Unconditional stability and long-term behavior of transient algorithms for the incompressible Navier-Stokes and Euler equations , 1994 .

[18]  D. Henry,et al.  Two- and three-dimensional numerical simulations of the transition to oscillatory convection in low-Prandtl-number fluids , 1998, Journal of Fluid Mechanics.

[19]  V. Croquette Convective pattern dynamics at low Prandtl number: Part I , 1989 .

[20]  R. Lehoucq,et al.  Computational bifurcation and stability studies of the 8: 1 thermal cavity problem , 2002 .

[21]  Anne C. Skeldon,et al.  Convection in a low Prandtl number fluid , 1996 .

[22]  Pinhas Z. Bar-Yoseph,et al.  Stability of multiple steady states of convection in laterally heated cavities , 1999, Journal of Fluid Mechanics.

[23]  S. Korpela,et al.  Convection rolls in a shallow cavity heated from a side , 1989 .

[24]  Masud Behnia,et al.  From onset of unsteadiness to chaos in a differentially heated square cavity , 1998, Journal of Fluid Mechanics.

[25]  J. Scott,et al.  HSL_MI20: An efficient AMG preconditioner for finite element problems in 3D , 2010 .

[26]  Daniel Henry,et al.  Three-dimensional free convection in molten gallium , 2001, Journal of Fluid Mechanics.

[27]  F. Busse,et al.  Non-linear properties of thermal convection , 1978 .

[28]  Howard C. Elman,et al.  Fast iterative solvers for buoyancy driven flow problems , 2011, J. Comput. Phys..

[29]  P. Larroudé,et al.  Direct numerical simulation of instabilities in a two-dimensional near-critical fluid layer heated from below , 2001, Journal of Fluid Mechanics.

[30]  Patrick Bontoux,et al.  Spectral simulations of oscillatory convection at low Prandtl number , 1990 .

[31]  J. Hart,et al.  Endwall driven, low prandtl number convection in a shallow rectangular cavity , 1990 .

[32]  Mark A. Christon,et al.  Computational predictability of time‐dependent natural convection flows in enclosures (including a benchmark solution) , 2002 .

[33]  Daniel Henry,et al.  On the onset of oscillatory convection in molten gallium , 2004, Journal of Fluid Mechanics.

[34]  R. Sani,et al.  Thermoconvective instability in a bounded cylindrical fluid layer , 1970 .

[35]  H. B. Hadid,et al.  On the onset of convective instabilities in cylindrical cavities heated from below. I. Pure thermal case , 1999 .

[36]  Anne C. Skeldon,et al.  Free convection in liquid gallium , 1997, Journal of Fluid Mechanics.

[37]  Le Gal P,et al.  Turbulence in a cylindrical container of argon near threshold of convection. , 1985, Physical review letters.

[38]  Emilie Gadoin,et al.  A general methodology for investigating flow instabilities in complex geometries : application to natural convection in enclosures , 2001 .

[39]  Jaroslav Hron,et al.  A monolithic FEM-multigrid solver for non-isothermal incompressible flow on general meshes , 2009, J. Comput. Phys..

[40]  R. Muddle Parallel Block Preconditioning for Multi-Physics Problems , 2011 .

[41]  K. H. Winters Oscillatory convection in liquid metals in a horizontal temperature gradient , 1988 .

[42]  H. Elman,et al.  Preconditioning Techniques for Newton's Method for the Incompressible Navier–Stokes Equations , 2003 .

[43]  William L. Briggs,et al.  A multigrid tutorial, Second Edition , 2000 .

[44]  Ahlers,et al.  Initial stages of pattern formation in Rayleigh-Bénard convection. , 1987, Physical review letters.

[45]  David F. Griffiths,et al.  Adaptive Time-Stepping for Incompressible Flow Part II: Navier--Stokes Equations , 2010, SIAM J. Sci. Comput..

[46]  Convective roll dynamics in liquid 4He near the onset of convection. , 2004, Physical review letters.