On the Analysis of Mixed-Index Time Fractional Differential Equation Systems

In this paper, we study the class of mixed-index time fractional differential equations in which different components of the problem have different time fractional derivatives on the left-hand side. We prove a theorem on the solution of the linear system of equations, which collapses to the well-known Mittag–Leffler solution in the case that the indices are the same and also generalises the solution of the so-called linear sequential class of time fractional problems. We also investigate the asymptotic stability properties of this class of problems using Laplace transforms and show how Laplace transforms can be used to write solutions as linear combinations of generalised Mittag–Leffler functions in some cases. Finally, we illustrate our results with some numerical simulations.

[1]  LuisVazauez FRACTIONAL DIFFUSION EQUATIONS WITH INTERNAL DEGREES OF FREEDOM , 2003 .

[2]  Marina Popolizio,et al.  Numerical Solution of Multiterm Fractional Differential Equations Using the Matrix Mittag–Leffler Functions , 2018 .

[3]  H. Saberi Najafi,et al.  Stability Analysis of Distributed Order Fractional Differential Equations , 2011 .

[4]  Margarita Rivero,et al.  Stability of Fractional Order Systems , 2013 .

[5]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[6]  Roger B. Sidje,et al.  Expokit: a software package for computing matrix exponentials , 1998, TOMS.

[7]  Richard L. Magin,et al.  Solving the fractional order Bloch equation , 2009 .

[8]  Carlos J. Moreno,et al.  The zeros of exponential polynomials (I) , 1973 .

[9]  Fawang Liu,et al.  Characterization of anomalous relaxation using the time‐fractional Bloch equation and multiple echo T2*‐weighted magnetic resonance imaging at 7 T , 2016, Magnetic resonance in medicine.

[10]  Vicente Grau,et al.  Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization , 2014, Journal of The Royal Society Interface.

[11]  YangQuan Chen,et al.  Global Padé Approximations of the Generalized Mittag-Leffler Function and its Inverse , 2013, 1310.5592.

[12]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[13]  Fawang Liu,et al.  Numerical simulation of the fractional Bloch equations , 2014, J. Comput. Appl. Math..

[14]  Roberto Garrappa,et al.  Evaluation of generalized Mittag–Leffler functions on the real line , 2013, Adv. Comput. Math..

[15]  Kevin Burrage,et al.  Fractional models for the migration of biological cells in complex spatial domains , 2013 .

[16]  T. R. Prabhakar A SINGULAR INTEGRAL EQUATION WITH A GENERALIZED MITTAG LEFFLER FUNCTION IN THE KERNEL , 1971 .

[17]  Kevin Burrage,et al.  On the Order of the Fractional Laplacian in Determining the Spatio-Temporal Evolution of a Space-Fractional Model of Cardiac Electrophysiology , 2015, PloS one.

[18]  Tianhai Tian,et al.  Plasma membrane nanoswitches generate high-fidelity Ras signal transduction , 2007, Nature Cell Biology.

[19]  Igor M. Sokolov,et al.  ANOMALOUS TRANSPORT IN EXTERNAL FIELDS : CONTINUOUS TIME RANDOM WALKS AND FRACTIONAL DIFFUSION EQUATIONS EXTENDED , 1998 .

[20]  Stefan Siegmund,et al.  Asymptotic behavior of solutions of linear multi-order fractional differential systems , 2017, 1708.08131.

[21]  D. Matignon Stability results for fractional differential equations with applications to control processing , 1996 .

[22]  S. Wearne,et al.  Fractional cable models for spiny neuronal dendrites. , 2008, Physical review letters.

[23]  Tomáš Kisela,et al.  Stability properties of two-term fractional differential equations , 2015 .

[24]  Jinhu Lü,et al.  Stability analysis of linear fractional differential system with multiple time delays , 2007 .

[25]  Alfonso Bueno-Orovio,et al.  Anomalous Diffusion in Cardiac Tissue as an Index of Myocardial Microstructure , 2016, IEEE Transactions on Medical Imaging.

[26]  T. Kaczorek,et al.  Fractional Differential Equations , 2015 .

[27]  Roberto Garrappa,et al.  Numerical Evaluation of Two and Three Parameter Mittag-Leffler Functions , 2015, SIAM J. Numer. Anal..

[28]  Jumat Sulaiman,et al.  Implicit finite difference solution for time-fractional diffusion equations using AOR method , 2014 .

[29]  J. Klafter,et al.  Microzooplankton Feeding Behavior and the Levy Walk , 1990 .

[30]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[31]  M. Emiliano Mathematical Problems in Engineering , 2014 .

[32]  Ivo Petr Stability of Fractional-Order Systems with Rational Orders , 2008 .

[33]  Fawang Liu,et al.  Numerical simulation of anomalous infiltration in porous media , 2014, Numerical Algorithms.

[34]  Francisco J. Sánchez-Sesma,et al.  Theory and simulation of time-fractional fluid diffusion in porous media , 2013 .

[35]  H. Srivastava,et al.  THEORY AND APPLICATIONS OF FRACTIONAL DIFFERENTIAL EQUATIONS. NORTH-HOLLAND MATHEMATICS STUDIES , 2006 .

[36]  Changpin Li,et al.  Asymptotical Stability of Nonlinear Fractional Differential System with Caputo Derivative , 2011 .

[37]  A. Elwakil,et al.  On the stability of linear systems with fractional-order elements , 2009 .

[38]  M. Hochbruck,et al.  Exponential integrators , 2010, Acta Numerica.

[39]  Changpin Li,et al.  A survey on the stability of fractional differential equations , 2011 .

[40]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[41]  M. Meerschaert,et al.  Numerical methods for solving the multi-term time-fractional wave-diffusion equation , 2012, Fractional calculus & applied analysis.

[42]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .