Isogeometric mortar methods
暂无分享,去创建一个
Barbara Wohlmuth | Annalisa Buffa | Linus Wunderlich | A. Buffa | B. Wohlmuth | Linus Wunderlich | E. Brivadis | Ericka Brivadis
[1] Mostafa M. Abdalla,et al. An interior point method for isogeometric contact , 2014 .
[2] Barbara Wohlmuth,et al. On Polynomial Reproduction of Dual FE Bases , 2004 .
[3] Leszek Marcinkowski. A Balancing Domain Decomposition Method for a Discretization of a Plate Problem on Nonmatching Grids , 2009, PPAM.
[4] S. Timoshenko,et al. Theory of elasticity , 1975 .
[5] Larry L. Schumaker,et al. Spline functions - basic theory, Third Edition , 2007, Cambridge mathematical library.
[6] Peter Wriggers,et al. Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS , 2012 .
[7] Peter Wriggers,et al. Computational Contact Mechanics , 2002 .
[8] Bishnu P. Lamichhane,et al. Higher order mortar finite elements with dual Lagrange multiplier spaces and applications , 2006 .
[9] Peter Wriggers,et al. A large deformation frictional contact formulation using NURBS‐based isogeometric analysis , 2011 .
[10] Pierre Kerfriden,et al. Nitsche's method method for mixed dimensional analysis: conforming and non-conforming continuum-beam and continuum-plate coupling , 2013, 1308.2910.
[11] Ulrich Langer,et al. Discontinuous Galerkin Isogeometric Analysis of Elliptic PDEs on Surfaces , 2016 .
[12] A. Nesliturk,et al. Applications of the pseudo residual-free bubbles to the stabilization of convection-diffusion-reaction problems , 2012 .
[13] Thomas J. R. Hughes,et al. n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .
[14] Yvon Maday,et al. The mortar element method for three dimensional finite elements , 1997 .
[15] Anthony T. Patera,et al. Domain Decomposition by the Mortar Element Method , 1993 .
[16] Leszek Marcinkowski,et al. A mortar element method for some discretizations of a plate problem , 2002, Numerische Mathematik.
[17] Roland Wüchner,et al. A Nitsche‐type formulation and comparison of the most common domain decomposition methods in isogeometric analysis , 2014 .
[18] L. Schumaker. Spline Functions: Basic Theory , 1981 .
[19] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[20] Les A. Piegl,et al. The NURBS Book , 1995, Monographs in Visual Communication.
[21] Vinh Phu Nguyen,et al. Nitsche’s method for two and three dimensional NURBS patch coupling , 2013, 1308.0802.
[22] Bert Jüttler,et al. IETI – Isogeometric Tearing and Interconnecting , 2012, Computer methods in applied mechanics and engineering.
[23] F. B. Belgacem,et al. EXTENSION OF THE MORTAR FINITE ELEMENT METHOD TO A VARIATIONAL INEQUALITY MODELING UNILATERAL CONTACT , 1999 .
[24] T. Hughes,et al. ISOGEOMETRIC COLLOCATION METHODS , 2010 .
[25] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[26] Barbara Wohlmuth,et al. Variationally consistent discretization schemes and numerical algorithms for contact problems* , 2011, Acta Numerica.
[27] Larry Schumaker,et al. Spline Functions: Basic Theory: Preface to the 3rd Edition , 2007 .
[28] R. Krause. NONCONFORMING DOMAIN DECOMPOSITION TECHNIQUES FOR LINEAR ELASTICITY , 2016 .
[29] Giancarlo Sangalli,et al. Anisotropic NURBS approximation in isogeometric analysis , 2012 .
[30] K. Bathe,et al. The inf-sup test , 1993 .
[31] Barbara I. Wohlmuth,et al. Quasi-Optimal Approximation of Surface Based Lagrange Multipliers in Finite Element Methods , 2012, SIAM J. Numer. Anal..
[32] Giancarlo Sangalli,et al. Exponential Convergence of the hp Version of Isogeometric Analysis in 1D , 2012 .
[33] M. Fortin,et al. Mixed Finite Element Methods and Applications , 2013 .
[34] L. Wahlbin. Superconvergence in Galerkin Finite Element Methods , 1995 .
[35] Wolfgang Dahmen,et al. A Multigrid Algorithm for the Mortar Finite Element Method , 1999, SIAM J. Numer. Anal..
[36] C. Schwab. P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .
[37] Marlon Franke,et al. Isogeometric Analysis and thermomechanical Mortar contact problems , 2014 .
[38] Manfred Kaltenbacher,et al. Applications of the Mortar Finite Element Method in Vibroacoustics and Flow Induced Noise Computations , 2010 .
[39] Peter Betsch,et al. Isogeometric analysis and domain decomposition methods , 2012 .
[40] Sung-Kie Youn,et al. Isogeometric contact analysis using mortar method , 2012 .
[41] Wenbin Chen,et al. A Multigrid Method for the Mortar-Type Morley Element Approximation of a Plate Bending Problem , 2001, SIAM J. Numer. Anal..
[42] M. Moussaoui,et al. Régularité des solutions d'un problème mêlé Dirichlet-Signorini dans un domaine polygonal plan , 1992 .
[43] C. Bernardi,et al. A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .
[44] Jens Markus Melenk,et al. Optimal a priori estimates for higher order finite elements for elliptic interface problems , 2010 .
[45] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[46] Barbara I. Wohlmuth,et al. Discretization Methods and Iterative Solvers Based on Domain Decomposition , 2001, Lecture Notes in Computational Science and Engineering.
[47] T. Hughes,et al. ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .
[48] Barbara Wohlmuth,et al. An abstract framework for a priori estimates for contact problems in 3D with quadratic finite elements , 2012 .
[49] Faker Ben Belgacem,et al. The Mortar finite element method with Lagrange multipliers , 1999, Numerische Mathematik.
[50] Thomas Apel,et al. Graded Mesh Refinement and Error Estimates for Finite Element Solutions of Elliptic Boundary Value P , 1996 .
[51] Peter Wriggers,et al. A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method , 2012 .
[52] Giancarlo Sangalli,et al. Mathematical analysis of variational isogeometric methods* , 2014, Acta Numerica.
[53] Barbara I. Wohlmuth,et al. Biorthogonal bases with local support and approximation properties , 2007, Math. Comput..
[54] Ernst Rank,et al. Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries , 2014 .
[55] Alessandro Reali,et al. GeoPDEs: A research tool for Isogeometric Analysis of PDEs , 2011, Adv. Eng. Softw..
[56] Sven Klinkel,et al. The weak substitution method - a new approach for the connection of NURBS surface patches in isogeometric analysis , 2014 .
[57] Miss A.O. Penney. (b) , 1974, The New Yale Book of Quotations.
[58] John A. Evans,et al. Isogeometric Analysis , 2010 .