Isogeometric mortar methods

The application of mortar methods in the framework of isogeometric analysis is investigated theoretically as well as numerically. For the Lagrange multiplier two choices of uniformly stable spaces are presented, both of them are spline spaces but of a different degree. In one case, we consider an equal order pairing for which a cross point modification based on a local degree reduction is required. In the other case, the degree of the dual space is reduced by two compared to the primal. This pairing is proven to be inf–sup stable without any necessary cross point modification. Several numerical examples confirm the theoretical results and illustrate additional aspects.

[1]  Mostafa M. Abdalla,et al.  An interior point method for isogeometric contact , 2014 .

[2]  Barbara Wohlmuth,et al.  On Polynomial Reproduction of Dual FE Bases , 2004 .

[3]  Leszek Marcinkowski A Balancing Domain Decomposition Method for a Discretization of a Plate Problem on Nonmatching Grids , 2009, PPAM.

[4]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[5]  Larry L. Schumaker,et al.  Spline functions - basic theory, Third Edition , 2007, Cambridge mathematical library.

[6]  Peter Wriggers,et al.  Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS , 2012 .

[7]  Peter Wriggers,et al.  Computational Contact Mechanics , 2002 .

[8]  Bishnu P. Lamichhane,et al.  Higher order mortar finite elements with dual Lagrange multiplier spaces and applications , 2006 .

[9]  Peter Wriggers,et al.  A large deformation frictional contact formulation using NURBS‐based isogeometric analysis , 2011 .

[10]  Pierre Kerfriden,et al.  Nitsche's method method for mixed dimensional analysis: conforming and non-conforming continuum-beam and continuum-plate coupling , 2013, 1308.2910.

[11]  Ulrich Langer,et al.  Discontinuous Galerkin Isogeometric Analysis of Elliptic PDEs on Surfaces , 2016 .

[12]  A. Nesliturk,et al.  Applications of the pseudo residual-free bubbles to the stabilization of convection-diffusion-reaction problems , 2012 .

[13]  Thomas J. R. Hughes,et al.  n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .

[14]  Yvon Maday,et al.  The mortar element method for three dimensional finite elements , 1997 .

[15]  Anthony T. Patera,et al.  Domain Decomposition by the Mortar Element Method , 1993 .

[16]  Leszek Marcinkowski,et al.  A mortar element method for some discretizations of a plate problem , 2002, Numerische Mathematik.

[17]  Roland Wüchner,et al.  A Nitsche‐type formulation and comparison of the most common domain decomposition methods in isogeometric analysis , 2014 .

[18]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[19]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[20]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[21]  Vinh Phu Nguyen,et al.  Nitsche’s method for two and three dimensional NURBS patch coupling , 2013, 1308.0802.

[22]  Bert Jüttler,et al.  IETI – Isogeometric Tearing and Interconnecting , 2012, Computer methods in applied mechanics and engineering.

[23]  F. B. Belgacem,et al.  EXTENSION OF THE MORTAR FINITE ELEMENT METHOD TO A VARIATIONAL INEQUALITY MODELING UNILATERAL CONTACT , 1999 .

[24]  T. Hughes,et al.  ISOGEOMETRIC COLLOCATION METHODS , 2010 .

[25]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[26]  Barbara Wohlmuth,et al.  Variationally consistent discretization schemes and numerical algorithms for contact problems* , 2011, Acta Numerica.

[27]  Larry Schumaker,et al.  Spline Functions: Basic Theory: Preface to the 3rd Edition , 2007 .

[28]  R. Krause NONCONFORMING DOMAIN DECOMPOSITION TECHNIQUES FOR LINEAR ELASTICITY , 2016 .

[29]  Giancarlo Sangalli,et al.  Anisotropic NURBS approximation in isogeometric analysis , 2012 .

[30]  K. Bathe,et al.  The inf-sup test , 1993 .

[31]  Barbara I. Wohlmuth,et al.  Quasi-Optimal Approximation of Surface Based Lagrange Multipliers in Finite Element Methods , 2012, SIAM J. Numer. Anal..

[32]  Giancarlo Sangalli,et al.  Exponential Convergence of the hp Version of Isogeometric Analysis in 1D , 2012 .

[33]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[34]  L. Wahlbin Superconvergence in Galerkin Finite Element Methods , 1995 .

[35]  Wolfgang Dahmen,et al.  A Multigrid Algorithm for the Mortar Finite Element Method , 1999, SIAM J. Numer. Anal..

[36]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[37]  Marlon Franke,et al.  Isogeometric Analysis and thermomechanical Mortar contact problems , 2014 .

[38]  Manfred Kaltenbacher,et al.  Applications of the Mortar Finite Element Method in Vibroacoustics and Flow Induced Noise Computations , 2010 .

[39]  Peter Betsch,et al.  Isogeometric analysis and domain decomposition methods , 2012 .

[40]  Sung-Kie Youn,et al.  Isogeometric contact analysis using mortar method , 2012 .

[41]  Wenbin Chen,et al.  A Multigrid Method for the Mortar-Type Morley Element Approximation of a Plate Bending Problem , 2001, SIAM J. Numer. Anal..

[42]  M. Moussaoui,et al.  Régularité des solutions d'un problème mêlé Dirichlet-Signorini dans un domaine polygonal plan , 1992 .

[43]  C. Bernardi,et al.  A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .

[44]  Jens Markus Melenk,et al.  Optimal a priori estimates for higher order finite elements for elliptic interface problems , 2010 .

[45]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[46]  Barbara I. Wohlmuth,et al.  Discretization Methods and Iterative Solvers Based on Domain Decomposition , 2001, Lecture Notes in Computational Science and Engineering.

[47]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[48]  Barbara Wohlmuth,et al.  An abstract framework for a priori estimates for contact problems in 3D with quadratic finite elements , 2012 .

[49]  Faker Ben Belgacem,et al.  The Mortar finite element method with Lagrange multipliers , 1999, Numerische Mathematik.

[50]  Thomas Apel,et al.  Graded Mesh Refinement and Error Estimates for Finite Element Solutions of Elliptic Boundary Value P , 1996 .

[51]  Peter Wriggers,et al.  A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method , 2012 .

[52]  Giancarlo Sangalli,et al.  Mathematical analysis of variational isogeometric methods* , 2014, Acta Numerica.

[53]  Barbara I. Wohlmuth,et al.  Biorthogonal bases with local support and approximation properties , 2007, Math. Comput..

[54]  Ernst Rank,et al.  Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries , 2014 .

[55]  Alessandro Reali,et al.  GeoPDEs: A research tool for Isogeometric Analysis of PDEs , 2011, Adv. Eng. Softw..

[56]  Sven Klinkel,et al.  The weak substitution method - a new approach for the connection of NURBS surface patches in isogeometric analysis , 2014 .

[57]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[58]  John A. Evans,et al.  Isogeometric Analysis , 2010 .