The recurrent SET-NUP 214 fusion as a new HOXA activation mechanism in pediatric T-cell acute lymphoblastic leukemia

P. Meijerink Buijs-Gladdines, Martin Horstmann, Elisabeth R. van Wering, Jean Soulier, Rob Pieters and Jules P. van der Spek, Andrew Stubbs, Jan Cools, Kyosuke Nagata, Maarten Fornerod, Jessica Pieter Van Vlierberghe, Martine van Grotel, Joëlle Tchinda, Charles Lee, H. Berna Beverloo, Peter J. in pediatric T-cell acute lymphoblastic leukemia activation mechanism HOXA fusion as a new SET-NUP214 The recurrent

[1]  K. Nagata,et al.  Impairment of erythroid and megakaryocytic differentiation by a Leukemia‐Associated and t(9;9)‐derived fusion gene product, SET/TAF‐Iβ‐CAN/Nup214 , 2008, Journal of cellular physiology.

[2]  A. Chinnaiyan,et al.  A role for the MLL fusion partner ENL in transcriptional elongation and chromatin modification. , 2007, Blood.

[3]  S. Armstrong,et al.  Global Increase in H3K79 Dimethylation in Murine and Human MLL-AF4 Lymphoblastic Leukemias. , 2007 .

[4]  B. Nadel,et al.  The C-MYB locus is involved in chromosomal translocation and genomic duplications in human T-cell acute leukemia (T-ALL), the translocation defining a new T-ALL subtype in very young children. , 2007, Blood.

[5]  R. Fodde,et al.  SET-CAN, the product of the t(9;9) in acute undifferentiated leukemia, causes expansion of early hematopoietic progenitors and hyperproliferation of stomach mucosa in transgenic mice. , 2007, The American journal of pathology.

[6]  Rob Pieters,et al.  Duplication of the MYB oncogene in T cell acute lymphoblastic leukemia , 2007, Nature Genetics.

[7]  Christopher B. Miller,et al.  Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia , 2007, Nature.

[8]  C. Mecucci,et al.  Cryptic chromosome 9q34 deletion generates TAF-Ialpha/CAN and TAF-Ibeta/CAN fusion transcripts in acute myeloid leukemia. , 2007 .

[9]  Adam A. Margolin,et al.  NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth , 2006, Proceedings of the National Academy of Sciences.

[10]  Charles Lee,et al.  The cryptic chromosomal deletion del(11)(p12p13) as a new activation mechanism of LMO2 in pediatric T-cell acute lymphoblastic leukemia. , 2006, Blood.

[11]  M. Bhasin,et al.  Notch1 Contributes to Mouse T-Cell Leukemia by Directly Inducing the Expression of c-myc , 2006, Molecular and Cellular Biology.

[12]  A. Hagemeijer,et al.  Cytogenetics and molecular genetics of T-cell acute lymphoblastic leukemia: from thymocyte to lymphoblast , 2006, Leukemia.

[13]  Yi Zhang,et al.  Leukaemic transformation by CALM–AF10 involves upregulation of Hoxa5 by hDOT1L , 2006, Nature Cell Biology.

[14]  J. Aster,et al.  c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. , 2006, Genes & development.

[15]  A. Look,et al.  Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia , 2006, Nature Reviews Cancer.

[16]  Kristian Helin,et al.  Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. , 2006, Genes & development.

[17]  E. Macintyre,et al.  CALM-AF10+ T-ALL expression profiles are characterized by overexpression of HOXA and BMI1 oncogenes , 2005, Leukemia.

[18]  F. Sigaux,et al.  HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). , 2005, Blood.

[19]  Yi Zhang,et al.  hDOT1L Links Histone Methylation to Leukemogenesis , 2005, Cell.

[20]  P. Marynen,et al.  A new recurrent inversion, inv(7)(p15q34), leads to transcriptional activation of HOXA10 and HOXA11 in a subset of T-cell acute lymphoblastic leukemias , 2005, Leukemia.

[21]  K. Nagata,et al.  Synergistic action of MLL, a TRX protein with template activating factor‐I, a histone chaperone , 2005, FEBS letters.

[22]  Robert Kincaid,et al.  Comparative genomic hybridization using oligonucleotide microarrays and total genomic DNA. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Andrew P. Weng,et al.  Activating Mutations of NOTCH1 in Human T Cell Acute Lymphoblastic Leukemia , 2004, Science.

[24]  A. Ferrando,et al.  Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia , 2004, Nature Genetics.

[25]  K. Nagata,et al.  Aberrant intracellular localization of SET‐CAN fusion protein, associated with a leukemia, disorganizes nuclear export , 2004, International journal of cancer.

[26]  Helen Pickersgill,et al.  Nup358/RanBP2 Attaches to the Nuclear Pore Complex via Association with Nup88 and Nup214/CAN and Plays a Supporting Role in CRM1-Mediated Nuclear Protein Export , 2004, Molecular and Cellular Biology.

[27]  G. Grosveld,et al.  Effects of SET and SET-CAN on the differentiation of the human promonocytic cell line U937 , 2004, Leukemia.

[28]  S. Armstrong,et al.  Gene expression signatures in MLL-rearranged T-lineage and B-precursor acute leukemias: dominance of HOX dysregulation. , 2003, Blood.

[29]  F. Weerkamp,et al.  Homeobox gene expression profile in human hematopoietic multipotent stem cells and T-cell progenitors: implications for human T-cell development , 2003, Leukemia.

[30]  Martin Vingron,et al.  Variance stabilization applied to microarray data calibration and to the quantification of differential expression , 2002, ISMB.

[31]  B. Verhasselt,et al.  HOX-A10 regulates hematopoietic lineage commitment: evidence for a monocyte-specific transcription factor. , 2002, Blood.

[32]  E. Lander,et al.  Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. , 2002, Cancer cell.

[33]  P. McNamara,et al.  Regulation of Histone Acetylation and Transcription by INHAT, a Human Cellular Complex Containing the Set Oncoprotein , 2001, Cell.

[34]  Unnur Thorsteinsdottir,et al.  Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b , 1998, The EMBO journal.

[35]  T. Rabbitts,et al.  The LIM‐only protein Lmo2 is a bridging molecule assembling an erythroid, DNA‐binding complex which includes the TAL1, E47, GATA‐1 and Ldb1/NLI proteins , 1997, The EMBO journal.

[36]  U. Thorsteinsdóttir,et al.  Overexpression of HOXA10 in murine hematopoietic cells perturbs both myeloid and lymphoid differentiation and leads to acute myeloid leukemia , 1997, Molecular and cellular biology.

[37]  M. Fornerod,et al.  Interaction of cellular proteins with the leukemia specific fusion proteins DEK-CAN and SET-CAN and their normal counterpart, the nucleoporin CAN. , 1996, Oncogene.

[38]  G. Grosveld,et al.  Characterization of the translocation breakpoint sequences of two DEK‐CAN fusion genes present in t(6;9) acute myeloid leukemia and a SET‐CAN fusion gene found in a case of acute undifferentiated leukemia , 1992, Genes, chromosomes & cancer.

[39]  M. Fornerod,et al.  The translocation (6;9), associated with a specific subtype of acute myeloid leukemia, results in the fusion of two genes, dek and can, and the expression of a chimeric, leukemia-specific dek-can mRNA , 1992, Molecular and cellular biology.

[40]  M. Prokocimer,et al.  Establishment of a human T-acute lymphoblastic leukemia cell line with a (16;20) chromosome translocation. , 1990, Cancer genetics and cytogenetics.

[41]  A. Poustka,et al.  The (6;9) chromosome translocation, associated with a specific subtype of acute nonlymphocytic leukemia, leads to aberrant transcription of a target gene on 9q34 , 1990, Molecular and cellular biology.

[42]  Y. Benjamini,et al.  More powerful procedures for multiple significance testing. , 1990, Statistics in medicine.

[43]  F. Speleman,et al.  Clinical, cytogenetic and molecular characteristics of 14 T-ALL patients carrying the TCRβ-HOXA rearrangement: a study of the Groupe Francophone de Cytogénétique Hématologique , 2007, Leukemia.

[44]  F. Sigaux,et al.  Cyclin D2 dysregulation by chromosomal translocations to TCR loci in T-cell acute lymphoblastic leukemias , 2006, Leukemia.

[45]  W. Kamps,et al.  The outcome of molecular-cytogenetic subgroups in pediatric T-cell acute lymphoblastic leukemia: a retrospective study of patients treated according to DCOG or COALL protocols. , 2006, Haematologica.

[46]  S. Armstrong,et al.  Molecular genetics of acute lymphoblastic leukemia. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[47]  P. Marynen,et al.  Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia. , 2005, Haematologica.

[48]  Ching-Hon Pui,et al.  Acute lymphoblastic leukemia. , 2004, The New England journal of medicine.